SARS-Cov-2 Variants: Biological and Mathematical Considerations for Nomenclature
Main Article Content
Abstract
Coronavirus (CoV) is one of the most widely used words during the past two years. If it were announced that Delta CoV only affects animals such as pigs and wigeons while Omicron CoV does not even exist, surely people would be offended and question the credibility of whoever stated this. But both statements are true, scientifically. Of note, it was stated Delta CoV and Omicron CoV, not Delta variant or Omicron variant of SARS-CoV-2. Such potentially confusing naming of a globally important virus therefore warrants further analyses. At the subfamily level, CoVs are divided into four genera (Alpha, Beta, Gamma, Delta) and only viruses of the Alpha and Beta branch infect humans. Now that the Omicron variant of SARS-CoV-2 have taken over from the Delta variant globally, the issue of the double use of genus labels (Alpha, Beta, Gamma, Delta) for variant naming is mitigated. However, we can still pause and ponder whether the Greek symbols alone are indeed ideal for labeling waves of SARS-CoV-2 variants. Here we propose additional criteria for naming of variants that considers specific biological and molecular characteristics of the virus-cell interaction. Our aim is to define a biological and structurally defined metric that can be used to distinguish SARS-CoV-2 variants interactions with host cells. This metric could find utility with numerous human viruses and provide an additional parameter for improved naming of viruses.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Hadfield J, Megill C, Bell SM, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. Dec 1 2018;34(23):4121-4123. doi:10.1093/bioinformatics/bty407
3. Rambaut A. Nat Microbiol. 2020// 2020;5doi:10.1038/s41564-020-0770-5
4. Callaway E, Ledford H. How bad is Omicron? What scientists know so far. Nature. Dec 2021;600(7888):197-199. doi:10.1038/d41586-021-03614-z
5. Konings F, Perkins MD, Kuhn JH, et al. SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nat Microbiol. Jul 2021;6(7):821-823. doi:10.1038/s41564-021-00932-w
6. Jefferson T, Spencer EA, Brassey J, et al. Transmission of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) from pre and asymptomatic infected individuals: a systematic review. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. Oct 29 2021;doi:10.1016/j.cmi.2021.10.015
7. Powers KA, Kretzschmar ME, Miller WC, Cohen MS. Impact of early-stage HIV transmission on treatment as prevention. Proc Natl Acad Sci U S A. Nov 11 2014;111(45):15867-8. doi:10.1073/pnas.1418496111
8. Li Bea. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. medRxiv. 2021; https://doi.org/10.1101/2021.07.07.21260122
9. Maan H, Mbareche H, Raphenya AR, et al. Genotyping SARS-CoV-2 through an interactive web application. Lancet Digit Health. Jul 2020;2(7):e340-e341. doi:10.1016/S2589-7500(20)30140-0
10. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. Apr 2020;26(4):450-452. doi:10.1038/s41591-020-0820-9
11. Zhao R, Pei S, Yau SST. New Genome Sequence Detection via Natural Vector Convex Hull Method. IEEE/ACM Trans Comput Biol Bioinform. Nov 25 2020;PPdoi:10.1109/TCBB.2020.3040706
12. Fantini J, Yahi N, Colson P, Chahinian H, La Scola B, Raoult D. The puzzling mutational landscape of the SARS-2-variant Omicron. Journal of medical virology. Jan 8 2022;doi:10.1002/jmv.27577
13. Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. May 2020;581(7807):215-220. doi:10.1038/s41586-020-2180-5
14. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. Mar 2020;579(7798):270-273. doi:10.1038/s41586-020-2012-7
15. Wang Y, Liu M, Gao J. Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc Natl Acad Sci U S A. Jun 23 2020;117(25):13967-13974. doi:10.1073/pnas.2008209117
16. Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. May 2020;581(7807):221-224. doi:10.1038/s41586-020-2179-y
17. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. Jul 15 2021;doi:10.1038/s41586-021-03819-2
18. Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome. Nature. Jul 22 2021;doi:10.1038/s41586-021-03828-1
19. Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. Jul 15 2021;doi:10.1126/science.abj8754
20. Wierbowski SD, Liang S, Liu Y, et al. A 3D structural SARS-CoV-2-human interactome to explore genetic and drug perturbations. Nature methods. Dec 2021;18(12):1477-1488. doi:10.1038/s41592-021-01318-w
21. Callaway E. 'A bloody mess': Confusion reigns over naming of new COVID variants. Nature. Jan 2021;589(7842):339. doi:10.1038/d41586-021-00097-w
22. Maiorov VN, Crippen GM. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol. Jan 14 1994;235(2):625-34. doi:10.1006/jmbi.1994.1017
23. Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature. Jan 2020;577(7792):706-710. doi:10.1038/s41586-019-1923-7