The Role of Material Technologies Targeting P. Aeruginosa and S. Aureus Quorum Sensing in Biofilm Formation
Main Article Content
Abstract
Periprosthetic joint infections are a major complication after total joint arthroplasty. Pseudomonas aeruginosa and Staphylococcus aureus are of great clinical concern, due to high antibiotic resistance, which is even increased when they form a biofilm on the implant surface. In this qualitative systematic review based on the PRISMA statement, biofilm formation of S. aureus and P. aeruginosa was studied, with a particular emphasis on the role of quorum sensing (QS). Treatment of infection by these bacteria by regulation or inhibition of the QS system via material technology was also reviewed. Pubmed, Google Scholar and Embase were searched. Articles were selected on their titles and use of the English language. All abstracts of the remaining articles were judged on the quality of the article, and fit with the scope of the review. This led to a selection of 62 articles, which consisted of 29 research articles and 33 reviews. In P. aeruginosa different QS systems are present in a hierarchal structure. These QS systems play an important role for formation of virulence factors and polymeric substances used in biofilm formation. In S. aureus, QS regulates biofilm dispersal, but not biofilm formation. Different treatments, either preventative by inhibiting biofilm formation or curative by biofilm dispersal are described in the literature. Combinations of QS inhibitors (QSI) and either antibiotics or metallic (nano)particles showed most promise in biofilm inhibition. QSI’s and other biofilm inhibitors are only under preclinical investigation. Furthermore, QS has different functions in different bacteria, and treatment using QSI’s are not suitable for every infection. While this makes QSI therapy unfit as an alternative to antibiotics, QSI’s in combination with antibiotics can be a potent strategy to prevent biofilm formation.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Izakovicova P, Borens O, Trampuz A. Periprosthetic joint infection: current concepts and outlook. EFORT Open Rev. Jul 2019;4(7):482-494. doi:10.1302/2058-5241.4.180092
3. Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev. Apr 2014;27(2):302-45. doi:10.1128/cmr.00111-13
4. Goud AL, Harlianto NI, Ezzafzafi S, Veltman ES, Bekkers JEJ, van der Wal BCH. Reinfection rates after one- and two-stage revision surgery for hip and knee arthroplasty: a systematic review and meta-analysis. Archives of Orthopaedic and Trauma Surgery. 2021/09/30 2021;doi:10.1007/s00402-021-04190-7
5. Zardi EM, Franceschi F. Prosthetic joint infection. A relevant public health issue. J Infect Public Health. Dec 2020;13(12):1888-1891. doi:10.1016/j.jiph.2020.09.006
6. Signore A, Sconfienza LM, Borens O, et al. Consensus document for the diagnosis of prosthetic joint infections: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging. Apr 2019;46(4):971-988. doi:10.1007/s00259-019-4263-9
7. Shah NB, Osmon DR, Steckelberg JM, et al. Pseudomonas Prosthetic Joint Infections: A Review of 102 Episodes. J Bone Jt Infect. 2016;1:25-30. doi:10.7150/jbji.15722
8. Craft KM, Nguyen JM, Berg LJ, Townsend SD. Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. 10.1039/C9MD00044E. MedChemComm. 2019;10(8):1231-1241. doi:10.1039/C9MD00044E
9. Totté JE, van der Feltz WT, Bode LG, van Belkum A, van Zuuren EJ, Pasmans SG. A systematic review and meta-analysis on Staphylococcus aureus carriage in psoriasis, acne and rosacea. Eur J Clin Microbiol Infect Dis. Jul 2016;35(7):1069-77. doi:10.1007/s10096-016-2647-3
10. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. Mar 2013;11(3):297-308. doi:10.1586/eri.13.12
11. Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. Mar 2018;18(3):318-327. doi:10.1016/s1473-3099(17)30753-3
12. Zimmerli W, Sendi P. Orthopaedic biofilm infections. Apmis. Apr 2017;125(4):353-364. doi:10.1111/apm.12687
13. Hogan S, Stevens NT, Humphreys H, O'Gara JP, O'Neill E. Current and future approaches to the prevention and treatment of staphylococcal medical device-related infections. Current Pharmaceutical Design. 01 Dec 2015;21(1):100-113.
14. Shah S, Gaikwad S, Nagar S, et al. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling. Jan 2019;35(1):34-49. doi:10.1080/08927014.2018.1563686
15. Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. Jul 2002;292(2):107-13. doi:10.1078/1438-4221-00196
16. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. Jul 2001;48 Suppl 1:5-16. doi:10.1093/jac/48.suppl_1.5
17. Dincer S, Uslu F, Delik A. Antibiotic Resistance in Biofilm. 2020.
18. Kaldalu N, Hauryliuk V, Tenson T. Persisters—as elusive as ever. Applied Microbiology and Biotechnology. 2016/08/01 2016;100(15):6545-6553. doi:10.1007/s00253-016-7648-8
19. Barrett TC, Mok WWK, Murawski AM, Brynildsen MP. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nature Communications. 2019/03/12 2019;10(1):1177. doi:10.1038/s41467-019-09058-4
20. Ivanova K, Ramon E, Hoyo J, Tzanov T. Innovative Approaches for Controlling Clinically Relevant Biofilms: Current Trends and Future Prospects. Current Topics in Medicinal Chemistry. // 2017;17(17):1889-1914.
21. Tande AJ, Gomez-Urena EO, Berbari EF, Osmon DR. Management of Prosthetic Joint Infection. Infect Dis Clin North Am. Jun 2017;31(2):237-252. doi:10.1016/j.idc.2017.01.009
22. Ricciardi BF, Muthukrishnan G, Masters EA, Kaplan N, Daiss JL, Schwarz EM. New developments and future challenges in prevention, diagnosis, and treatment of prosthetic joint infection. J Orthop Res. Jul 2020;38(7):1423-1435. doi:10.1002/jor.24595
23. Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. Jun 2019;17(6):371-382. doi:10.1038/s41579-019-0186-5
24. Borges A, Sousa P, Gaspar A, Vilar S, Borges F, Simões M. Furvina inhibits the 3-oxo-C12-HSL-based quorum sensing system of Pseudomonas aeruginosa and QS-dependent phenotypes. Biofouling. 2017;33(2):156-168. doi:10.1080/08927014.2017.1280732
25. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj. Mar 29 2021;372:n71. doi:10.1136/bmj.n71
26. Garrett TR, Bhakoo M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Progress in Natural Science. 2008/09/10/ 2008;18(9):1049-1056. doi:https://doi.org/10.1016/j.pnsc.2008.04.001
27. Plakunov VK, Mart’Yanov SV, Teteneva NA, Zhurina MV. Controlling of microbial biofilms formation: Anti- and probiofilm agents. Microbiology. 2017;86(4):423-438. doi:10.1134/s0026261717040129
28. Dutta Sinha S, Chatterjee S, Maiti PK, Tarafdar S, Moulik SP. Evaluation of the role of substrate and albumin on Pseudomonas aeruginosa biofilm morphology through FESEM and FTIR studies on polymeric biomaterials. Prog Biomater. 2017;6(1-2):27-38. doi:10.1007/s40204-017-0061-2
29. Jakobsen T, Tolker-Nielsen T, Givskov M. Bacterial Biofilm Control by Perturbation of Bacterial Signaling Processes. International Journal of Molecular Sciences. 2017;18(9):1970. doi:10.3390/ijms18091970
30. Francolini I, Vuotto C, Piozzi A, Donelli G. Antifouling and antimicrobial biomaterials: an overview. APMIS. 2017;125(4):392-417. doi:10.1111/apm.12675
31. Galarraga-Vinueza ME, Mesquita-Guimarães J, Magini RS, Souza JCM, Fredel MC, Boccaccini AR. Anti-biofilm properties of bioactive glasses embedding organic active compounds. Journal of Biomedical Materials Research Part A. 2017;105(2):672-679. doi:10.1002/jbm.a.35934
32. Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. Genetic control of bacterial biofilms. Journal of applied genetics. 2016;57(2):225-238.
33. Haque S, Yadav DK, Bisht SC, et al. Quorum sensing pathways in Gram-positive and -negative bacteria: potential of their interruption in abating drug resistance. Journal of Chemotherapy. 2019/05/19 2019;31(4):161-187. doi:10.1080/1120009X.2019.1599175
34. Haque S, Ahmad F, Dar SA, et al. Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microbial Pathogenesis. 2018;121:293-302. doi:10.1016/j.micpath.2018.05.046
35. Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D. Interference in bacterial quorum sensing: a biopharmaceutical perspective. Frontiers in pharmacology. 2018;9:203.
36. Venkatesan N, Perumal G, Doble M. Bacterial resistance in biofilm-associated bacteria. Review. Future Microbiology. November 2015;10(11):1743-1750.
37. Skariyachan S, Sridhar VS, Packirisamy S, Kumargowda ST, Challapilli SB. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiologica. 2018;63(4):413-432. doi:10.1007/s12223-018-0585-4
38. Reichhardt C, Jacobs HM, Matwichuk M, Wong C, Wozniak DJ, Parsek MR. The Versatile Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Promotes Aggregation through Different Extracellular Exopolysaccharide Interactions. J Bacteriol. 2020;202(19):e00216-20. doi:10.1128/JB.00216-20
39. Jennings LK, Storek KM, Ledvina HE, et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the <em>Pseudomonas aeruginosa</em> biofilm matrix. Proceedings of the National Academy of Sciences. 2015;112(36):11353. doi:10.1073/pnas.1503058112
40. Whitfield GB, Marmont LS, Ostaszewski A, et al. Pel Polysaccharide Biosynthesis Requires an Inner Membrane Complex Comprised of PelD, PelE, PelF, and PelG. J Bacteriol. Mar 26 2020;202(8)doi:10.1128/jb.00684-19
41. Khan W, Bernier SP, Kuchma SL, Hammond JH, Hasan F, O'Toole GA. Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol. Dec 2010;13(4):207-12. doi:10.2436/20.1501.01.127
42. Colvin KM, Gordon VD, Murakami K, et al. The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa. PLoS Pathogens. 2011;7(1):e1001264. doi:10.1371/journal.ppat.1001264
43. Colvin KM, Irie Y, Tart CS, et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. 2012;14(8):1913-1928. doi:10.1111/j.1462-2920.2011.02657.x
44. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The Formation of Biofilms byPseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms. BioMed Research International. 2015;2015:1-17. doi:10.1155/2015/759348
45. Miquel S, Lagrafeuille R, Souweine B, Forestier C. Anti-biofilm Activity as a Health Issue. Review. Frontiers in Microbiology. 2016-April-26 2016;7(592)doi:10.3389/fmicb.2016.00592
46. Bernier SP, Surette MG. Concentration-dependent activity of antibiotics in natural environments. Frontiers in microbiology. 2013;4:20.
47. Fong J, Zhang C, Yang R, et al. Combination Therapy Strategy of Quorum Quenching Enzyme and Quorum Sensing Inhibitor in Suppressing Multiple Quorum Sensing Pathways of P. aeruginosa. Scientific reports. 18 Jan 2018;8(1):1155.
48. Magalhães AP, Jorge P, Pereira MO. Pseudomonas aeruginosa and Staphylococcus aureus communication in biofilm infections: insights through network and database construction. Critical Reviews in Microbiology. 2019;45(5-6):712-728. doi:10.1080/1040841x.2019.1700209
49. Pérez-Pérez M, Jorge P, Pérez Rodríguez G, Pereira MO, Lourenço A. Quorum sensing inhibition in Pseudomonas aeruginosa biofilms: new insights through network mining. 2017:1-15. doi:10.1080/08927014.2016.1272104
50. Cândido EDS, De Barros E, Cardoso MH, Franco OL. Bacterial cross-resistance to anti-infective compounds. Is it a real problem? Current Opinion in Pharmacology. 2019;48:76-81. doi:10.1016/j.coph.2019.05.004
51. Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Current Pharmaceutical Design. 01 Dec 2015;21(1):5-11.
52. Proctor CR, McCarron PA, Ternan NG. Furanone quorum-sensing inhibitors with potential as novel therapeutics against Pseudomonas aeruginosa. Review. Journal of Medical Microbiology. 2020;69(2):195-206.
53. Furiga A, Lajoie B, El Hage S, Baziard G, Roques C. Impairment of Pseudomonas aeruginosa Biofilm Resistance to Antibiotics by Combining the Drugs with a New Quorum-Sensing Inhibitor. Antimicrob Agents Chemother. Dec 28 2015;60(3):1676-86. doi:10.1128/aac.02533-15
54. Zhao J, Jiang H, Cheng W, et al. The role of quorum sensing system in antimicrobial inducedampCexpression inPseudomonas aeruginosabiofilm. Journal of Basic Microbiology. 2015;55(5):671-678. doi:10.1002/jobm.201300987
55. Lin J, Cheng J, Wang Y, Shen X. The Pseudomonas Quinolone Signal (PQS): Not Just for Quorum Sensing Anymore. Front Cell Infect Microbiol. 2018;8:230. doi:10.3389/fcimb.2018.00230
56. Soheili V, Tajani AS, Ghodsi R, Bazzaz BSF. Anti-PqsR compounds as next-generation antibacterial agents against Pseudomonas aeruginosa: A review. Review. European Journal of Medicinal Chemistry. 15 June 2019;172:26-35.
57. Sonnleitner E, Gonzalez N, Sorger-Domenigg T, et al. The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Molecular microbiology. 03/01 2011;80:868-85. doi:10.1111/j.1365-2958.2011.07620.x
58. Cornelis P. Putting an end to the Pseudomonas aeruginosa IQS controversy. MicrobiologyOpen. 2020/02/01 2020;9(2):e962. doi:10.1002/mbo3.962
59. Caly DL, Bellini D, A. Walsh M, Maxwell Dow J, P. Ryan R. Targeting Cyclic di-GMP Signalling: A Strategy to Control Biofilm Formation? Current Pharmaceutical Design. // 2015;21(1):12-24.
60. Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett. Jun 15 2017;364(11)doi:10.1093/femsle/fnx104
61. Kranjec C, Morales Angeles D, Torrissen Mårli M, et al. Staphylococcal biofilms: Challenges and novel therapeutic perspectives. Antibiotics. 2021;10(2):131.
62. Parastan R, Kargar M, Solhjoo K, Kafilzadeh F. Staphylococcus aureus biofilms: Structures, antibiotic resistance, inhibition, and vaccines. Gene Reports. 2020:100739.
63. Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Review. Microbiology and Molecular Biology Reviews. 2020;84(3)e00026-19.
64. Graf AC, Leonard A, Schäuble M, et al. Virulence factors produced by Staphylococcus aureus biofilms have a moonlighting function contributing to biofilm integrity. Molecular & Cellular Proteomics. 2019;18(6):1036-1053.
65. Kim MK, Zhao A, Wang A, et al. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nature microbiology. 2017;2(8):1-12.
66. Li X, Wu B, Chen H, et al. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. 10.1039/C8TB01245H. Journal of Materials Chemistry B. 2018;6(26):4274-4292. doi:10.1039/C8TB01245H
67. Wu H, Moser C, Wang H-Z, Høiby N, Song Z-J. Strategies for combating bacterial biofilm infections. International journal of oral science. 2015;7(1):1.
68. Bahari S, Zeighami H, Mirshahabi H, Roudashti S, Haghi F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. Journal of Global Antimicrobial Resistance. 2017;10:21-28. doi:10.1016/j.jgar.2017.03.006
69. Gupta P, Chhibber S, Harjai K. Subinhibitory concentration of ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation & reduction of virulence. Indian J Med Res. May 2016;143(5):643-51. doi:10.4103/0971-5916.187114
70. She P, Wang Y, Luo Z, et al. Meloxicam inhibits biofilm formation and enhances antimicrobial agents efficacy by Pseudomonas aeruginosa. MicrobiologyOpen. 2018;7(1):e00545. doi:10.1002/mbo3.545
71. Saini H, Vadekeetil A, Chhibber S, Harjai K. Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa. Antimicrob Agents Chemother. Mar 2017;61(3)doi:10.1128/aac.01906-16
72. Koeva M, Gutu AD, Hebert W, et al. An Antipersister Strategy for Treatment of Chronic Pseudomonas aeruginosa Infections. Antimicrobial Agents and Chemotherapy. 2017;61(12):e00987-17. doi:10.1128/AAC.00987-17
73. Al-Shabib NA, Husain FM, Khan RA, et al. Interference of phosphane copper (I) complexes of β-carboline with quorum sensing regulated virulence functions and biofilm in foodborne pathogenic bacteria: A first report. Saudi Journal of Biological Sciences. 2019;26(2):308-316.
74. Borges A, Simões M, Todorović T, Filipović N, García-Sosa A. Cobalt Complex with Thiazole-Based Ligand as New Pseudomonas aeruginosa Quorum Quencher, Biofilm Inhibitor and Virulence Attenuator. Molecules. 2018;23(6):1385. doi:10.3390/molecules23061385
75. Li W, Geng X, Liu D, Li Z. Near-Infrared Light-Enhanced Protease-Conjugated Gold Nanorods As A Photothermal Antimicrobial Agent For Elimination Of Exotoxin And Biofilms. Int J Nanomedicine. 2019;14:8047-8058. doi:10.2147/ijn.S212750
76. Gholamrezazadeh M, Shakibaie MR, Monirzadeh F, Masoumi S, Hashemizadeh Z. Effect of nano-silver, nano-copper, deconex and benzalkonium chloride on biofilm formation and expression of transcription regulatory quorum sensing gene ( rh1 R) in drug-resistance Pseudomonas aeruginosa burn isolates. Burns. 2018;44(3):700-708. doi:10.1016/j.burns.2017.10.021
77. Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep. Sep 8 2015;5:13719. doi:10.1038/srep13719
78. Srinivasan R, Vigneshwari L, Rajavel T, et al. Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. Environ Sci Pollut Res Int. Apr 2018;25(11):10538-10554. doi:10.1007/s11356-017-1049-0
79. Zhang Y, Pan X, Liao S, et al. Quantitative Proteomics Reveals the Mechanism of Silver Nanoparticles against Multidrug-Resistant Pseudomonas aeruginosa Biofilms. Journal of Proteome Research. 07 Aug 2020;19(8):3109-3122.
80. Belete TM. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Human Microbiome Journal. 2019;11:100052. doi:10.1016/j.humic.2019.01.001
81. Galdiero E, Lombardi L, Falanga A, Libralato G, Guida M, Carotenuto R. Biofilms: Novel Strategies Based on Antimicrobial Peptides. Pharmaceutics. 2019;11(7):322. doi:10.3390/pharmaceutics11070322
82. Vuotto C, Donelli G. Novel Treatment Strategies for Biofilm-Based Infections. Drugs. 2019/10/01 2019;79(15):1635-1655. doi:10.1007/s40265-019-01184-z
83. Liu J, Li W, Zhu X, et al. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Applied Microbiology and Biotechnology. 2019;103(11):4565-4574. doi:10.1007/s00253-019-09808-w
84. Jorge P, Alves D, Pereira MO. Catalysing the way towards antimicrobial effectiveness: A systematic analysis and a new online resource for antimicrobial–enzyme combinations against Pseudomonas aeruginosa and Staphylococcus aureus. International Journal of Antimicrobial Agents. 2019;53(5):598-605. doi:10.1016/j.ijantimicag.2019.01.001
85. Roudashti S, Zeighami H, Mirshahabi H, Bahari S, Soltani A, Haghi F. Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. 2017;33(3)doi:10.1007/s11274-016-2195-0
86. Singh N, Romero M, Travanut A, et al. Dual bioresponsive antibiotic and quorum sensing inhibitor combination nanoparticles for treatment of Pseudomonas aeruginosa biofilms in vitro and ex vivo. Biomater Sci. Sep 24 2019;7(10):4099-4111. doi:10.1039/c9bm00773c
87. Liu L, Li J-H, Zi S-F, et al. AgNP combined with quorum sensing inhibitor increased the antibiofilm effect on Pseudomonas aeruginosa. Applied Microbiology and Biotechnology. 2019;103(15):6195-6204. doi:10.1007/s00253-019-09905-w
88. Loo CY, Rohanizadeh R, Young PM, et al. Combination of Silver Nanoparticles and Curcumin Nanoparticles for Enhanced Anti-biofilm Activities. Journal of agricultural and food chemistry. 30 Mar 2016;64(12):2513-2522.
89. Costoya A, Velazquez Becerra LE, Melendez-Ortiz HI, et al. Immobilization of antimicrobial and anti-quorum sensing enzymes onto GMA-grafted poly(vinyl chloride) catheters. Int J Pharm. Mar 10 2019;558:72-81. doi:10.1016/j.ijpharm.2018.12.075
90. Singh VK, Mishra A, Jha B. 3-benzyl-hexahydro-pyrrolo[1,2-a]pyrazine-1,4-dione extracted from exiguobacterium indicum showed anti-biofilm activity against pseudomonas aeruginosa by attenuating quorum sensing. Frontiers in Microbiology. 2019;10(JUN)1269.