The Elastic Constant of Coagulative Viscoelastometry
Main Article Content
Abstract
Clot strength is of utmost clinical significance. The elastic constant of the forming clot is a surrogate of its strength. The elastometric assessment of the forming clot, known as thromboelastography, is therefore of utmost clinical importance. Thromboelastography using a rotational viscoelastometer requires a geometric model to couple the shear deformation of a forming blood clot to its viscoelastic properties. Hartert’s original model idealized the complex geometry of the clot as a single cuboid and predicted a maximal effective shear modulus Gmax=5000 dyn/cm2. Hochleitner et al. recently reviewed this decades-old model, with the aim to refine it by reducing geometric simplifications that made the model more tractable. Hochleitner’s revised model uncouples annular segments and idealizes them as cuboids, thereby obtaining a maximal effective shear modulus of Gmax=4466 dyn/cm2. Hochleitner’s idealizations, while more accurate that Hartert’s, still produces error of at least 52%. Using the actual formula for annular shear from an applied torque, as derived by Ramberg and Miller, obviates several geometric simplifications assumed for analytical tractability and produces an elastic constant of G=2930 dyn/cm2. The clinical importance of precise determination of the formula for transforming clot amplitude to clot strength is underscored by the nonlinear relationship between elastometric amplitude and elastic constant, as the systematic error cannot be linearly rescaled. Thus, clot strength in several clinical scenarios should be based on clot strength as opposed to clot amplitude.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
1. Hartert H. Blutgerinnungsstudien mit der Thrombelastographie; einem neuen Untersuchungs verfahren [Blood clotting studies with Thrombus stressography; a new Investigation procedure]. Klin Wochenschr. Oct 1 1948;26(37-38):577-83. Blutgerinnungsstudien mit der Thrombelastographie; einem neuen Untersuchungs verfahren. doi:10.1007/BF01697545
2. Özkaya N, Nordin M, Goldsheyder D, Leger D. Mechanical Properties of Biological Tissues. Fundamentals of Biomechanics. Springer, New York, NY; 2012:221-236: Chapter 15.
3. Elert G. The Physics Hypertextbook. Elasticity Accessed March 10th, 2022. https://physics.info/elasticity/
4. Capurro M, Barberis F. Evaluating the mechanical properties of biomaterials. In: Dubruel P, Van Vlierberghe S, eds. Biomaterials for Bone Regeneration. Woodhead Publishing; 2014:270-323:chap 9.
5. Hochleitner G, Sutor K, Levett C, Leyser H, Schlimp CJ, Solomon C. Revisiting Hartert's 1962 Calculation of the Physical Constants of Thrombelastography. Clin Appl Thromb Hemost. Apr 2017;23(3):201-210. doi:10.1177/1076029615606531
6. Hartert H. Thrombelastography: physical and physiological aspects. In: Copley AL SG, ed. Flow Properties of Blood and Other Biological Systems. Pergamon Press; 1960:186-196.
7. Hartert H, Schaeder JA. The physical and biological constants of thrombelastography. Biorheology. 1962;1(1):31-39. doi:10.3233/bir-1962-1105
8. Chandler WL. The thromboelastography and the thromboelastograph technique. Semin Thromb Hemost. 1995;21 Suppl 4:1-6. https://www.ncbi.nlm.nih.gov/pubmed/8747681
9. Haemoscope Corporation. PN06-510 TEG 5000 User Manual. Haemoscope Corporation; 2007. https://studylib.net/doc/18643089/pn06-510-teg-5000-user-manual
10. Ramberg W, Miller JA. Stress-Strain Relation in Shear From Twisting Test of Annulus. J Res Nat Bur Stands. 1953; 50:125-130 doi:http://dx.doi.org/10.6028/jres.050.019
11. Brannon R. Annulus Twist as a verification test. March 10th, 2022, 2022. Updated 09/01/2011. Accessed 09/15, 2020. https://csmbrannon.net/author/rebeccabrannon/
12. Weggel DC, Boyajian DM, Chen S-E. Modelling structures as systems of springs. World Transactions on Engineering and Technology Education. 2007;6(1):169-172. http://www.wiete.com.au/journals/WTE&TE/Pages/TOC_V6N1.html
13. Baksaas-Aasen K, Gall L, Eaglestone S, et al. iTACTIC - implementing Treatment Algorithms for the Correction of Trauma-Induced Coagulopathy: study protocol for a multicentre, randomised controlled trial. Trials. 2017;18(1):486-486. doi:10.1186/s13063-017-2224-9
14. Sakai T. Viscoelastic testing in liver transplantation. Transfusion. Oct 2020;60 Suppl 6(S6):S61-S69. doi:10.1111/trf.16077
15. Solomon C, Ranucci M, Hochleitner G, Schöchl H, Schlimp CJ. Assessing the Methodology for Calculating Platelet Contribution to Clot Strength (Platelet Component) in Thromboelastometry and Thrombelastography. Anesth Analg. 2015;121(4):868-878. doi:10.1213/ANE.0000000000000859
16. Evans PA, Hawkins K, Lawrence M, et al. Rheometry and associated techniques for blood coagulation studies. Med Eng Phys. Jul 2008;30(6):671-9. doi:10.1016/j.medengphy.2007.08.005
17. Scott Blair GW, Burnett J. On the rates of coagulation and subsequent softening of bovine and human blood and of thrombin-fibrinogen. Biorheology. 1968;5:163-176. doi:10.3233/BIR-1968-5207
18. Scott Blair GW, Burnett J. Thrombelastography of Newtonian fluids. Biorheology. 1968;5:177-177. doi:10.3233/BIR-1968-5208
19. Huang CC, Chen PY, Shih CC. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach. Med Phys. Apr 2013;40(4):042901. doi:10.1118/1.4794493
20. Scogin T, Yesudasan S, Walker MLR, Averett RD. Electromagnetically Induced Distortion of a Fibrin Matrix with Embedded Microparticles. J Mech Med Biol. 2018;18:1850016. doi:10.1142/S0219519418500161
21. Tutwiler V, Singh J, Litvinov RI, Bassani JL, Purohit PK, Weisel JW. Rupture of blood clots: Mechanics and pathophysiology. Sci Adv. Aug 2020;6(35):eabc0496. doi:10.1126/sciadv.abc0496
22. Oberfrank S, Drechsel H, Sinn S, Northoff H, Gehring FK. Utilisation of Quartz Crystal Microbalance Sensors with Dissipation (QCM-D) for a Clauss Fibrinogen Assay in Comparison with Common Coagulation Reference Methods. Sensors (Basel). 2016;16(3):282-282. doi:10.3390/s16030282
23. Vikinge TP, Hansson KM, Benesch J, et al. Blood plasma coagulation studied by surface plasmon resonance. J Biomed Opt. Jan 2000;5(1):51-5. doi:10.1117/1.429968 DOI: 10.1117/1.429968.