The role of myocardial global longitudinal strain in etiological stratification of heart failure and left ventricular systolic dysfunction

Main Article Content

Mario Sutil-Vega, MD Marcelo Rizzo, MD Fadwa Taibi-Hajjami, MD Carlos Roca-Guerrero, MD Íngrid Colomer Asenjo, MD Meritxell Lloreda Surribas, MD Núria Mallofré Vila, MD Gabriel Torres Ruiz, MD Paola Rojas Flores, MD Antoni Martínez-Rubio, PhD

Abstract

Introduction: In patients with heart failure, global longitudinal strain (GLS) early detects decreased ventricular contractility, with prognostic value, but there is no evidence that GLS properly differentiates etiologies in patients with left ventricular ejection fraction <50%.


Methods and aims: 147 patients with heart failure and left ventricular ejection fraction <50% were included retrospectively. The aims were to compare the GLS in patients with heart failure with reduced (<40%) to those with mildly reduced ejection fraction (40-49%) and, to compare GLS between the different etiologies in each of these two subpopulations.


 Results: 78 patients presented mildly reduced (53%) and 69 reduced ejection fraction (47%). The mean GLS was -13.4% ± 3.3% (mildly reduced -14.9% ± 2.9%, reduced -11.7% ± 3.0%, p <0.001). In mildly reduced ejection fraction, the etiologies were ischemic (47.4%), idiopathic (25.6%), tachycardiomyopathy (12.8%), valvular (11.6%), and toxic (2.6%), with similar mean GLS (p = ns among all etiologies). In reduced ejection fraction, the etiology of 50.7% patients was ischemic, 24.6% idiopathic, 10.1% valvular, 8.7% tachycardiomyopathy, and 5.8% toxic, with similar mean GLS (p = ns among all etiologies).


Conclusions: There were no significant differences in GLS between the etiologies of heart failure in any subpopulation. The reduced ejection fraction patients presented worse GLS.

Article Details

How to Cite
SUTIL-VEGA, Mario et al. The role of myocardial global longitudinal strain in etiological stratification of heart failure and left ventricular systolic dysfunction. Medical Research Archives, [S.l.], v. 10, n. 9, sep. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3035>. Date accessed: 02 oct. 2023. doi: https://doi.org/10.18103/mra.v10i9.3035.
Section
Research Articles

References

1. McDonagh TA, Metra M, Adamo M et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 Sep 21;42(36):3599-726.
DOI: 10.1093/eurheartj/ehab368

2. Lang RM, Badano LP, Mor-Avi V et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Hear J - Cardiovasc Imaging. 2015 Mar;16(3):233-71. DOI: 10.1093/ehjci/jev014

3. Yancy CW, Jessup M, Bozkurt B et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013 Oct 15;62(16):e147-239. DOI: 10.1016/j.jacc.2013.05.019

4. Mele D, Nardozza M, Ferrari R. Left ventricular ejection fraction and heart failure: an indissoluble marriage? Eur J Heart Fail. 2018 Mar;20(3):427-30. DOI: 10.1002/ejhf.1071

5. Collier P, Phelan D, Klein A. A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol. 2017;69:1043–56.
DOI: 10.1016/j.jacc.2016.12.012

6. Claus P, Omar A, Pedrizzetti G et al. Tissue Tracking Technology for Assessing Cardiac Mechanics: Principles, Normal Values, and Clinical Applications. JACC Cardiovasc Imaging. 2015;12:1444-60.
DOI: 10.1016/j.jcmg.2015.11.001

7. Sawaya H, Sebag IA, Plana JC et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012 Sep 1;5(5):596-603.
DOI: 10.1161/CIRCIMAGING.112.973321

8. Biering-Sørensen T, Biering-Sørensen SR, Olsen FJ et al. Global Longitudinal Strain by Echocardiography Predicts Long-Term Risk of Cardiovascular Morbidity and Mortality in a Low-Risk General Population: The Copenhagen City Heart Study. Circ Cardiovasc Imaging. 2017 Mar;10(3).
DOI: 10.1161/CIRCIMAGING.116.005521

9. Russo C, Jin Z, Elkind MS et al. Prevalence and prognostic value of subclinical left ventricular systolic dysfunction by global longitudinal strain in a community-based cohort. Eur J Heart Fail. 2014 Dec;16(12):1301-9. DOI: 10.1002/ejhf.154

10. Lee WH, Liu YW, Yang LT et al. Prognostic value of longitudinal strain of subepicardial myocardium in patients with hypertension. J Hypertens. 2016 Jun;34(6):1195-200.
DOI: 10.1097/HJH.0000000000000903

11. Liu JH, Chen Y, Yuen M et al. Incremental prognostic value of global longitudinal strain in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2016 Feb 3;15:22.
DOI: 10.1186/s12933-016-0333-5

12. Shah AM, Claggett B, Sweitzer NK et al. Prognostic Importance of Impaired Systolic Function in Heart Failure With Preserved Ejection Fraction and the Impact of Spironolactone. Circulation. 2015 Aug 4;132(5):402-14.
DOI: 10.1161/CIRCULATIONAHA.115.015884

13. Antoni ML, Mollema SA, Delgado V et al. Prognostic importance of strain and strain rate after acute myocardial infarction. Eur Heart J. 2010 Jul;31(13):1640-7.
DOI: 10.1093/eurheartj/ehq105

14. Liu H, Pozios I, Haileselassie B et al. Role of Global Longitudinal Strain in Predicting Outcomes in Hypertrophic Cardiomyopathy. Am J Cardiol. 2017 Aug 15;120(4):670-5.
DOI: 10.1016/j.amjcard.2017.05.039

15. Yingchoncharoen T, Gibby C, Rodriguez LL et al. Association of myocardial deformation with outcome in asymptomatic aortic stenosis with normal ejection fraction. Circ Cardiovasc Imaging. 2012 Nov;5(6):719-25.
DOI: 10.1161/CIRCIMAGING.112.977348

16. Popović ZB, Kwon DH, Mishra M et al. Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging. J Am Soc Echocardiogr. 2008 Dec;21(12):1299-305. DOI: 10.1016/j.echo.2008.09.011

17. Salazar-Marin S, Valencia JM, Hernández-Vásquez OM et al. Utilidad del strain sistólico pico longitudinal bidimensional en pacientes con diagnóstico clínico de infarto de miocardio sin elevación del ST. Rev Colomb Cardiol. 2017;24(6):550-8.
DOI: 10.1016/j.rccar.2017.04.011

18. Bellavia D, Michelena HI, Martinez M et al. Speckle myocardial imaging modalities for early detection of myocardial impairment in isolated left ventricular non-compaction. Heart. 2010 Mar;96(6):440-7.
DOI: 10.1136/hrt.2009.182170

19. Wong CY, O'Moore-Sullivan T, Leano R et al. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation. 2004 Nov 9;110(19):3081-7.
DOI: 10.1161/01.CIR.0000147184.13872.0F

20. Szelényi Z, Fazakas Á, Szénási G et al. The mechanism of reduced longitudinal left ventricular systolic function in hypertensive patients with normal ejection fraction. J Hypertens. 2015 Sep;33(9):1962-9.
DOI: 10.1097/HJH.0000000000000624

21. Ernande L, Bergerot C, Rietzschel ER et al. Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr. 2011 Nov;24(11):1268-75.
DOI: 10.1016/j.echo.2011.07.017

22. Mousavi N, Tan TC, Ali M et al. Echocardiographic parameters of left ventricular size and function as predictors of symptomatic heart failure in patients with a left ventricular ejection fraction of 50-59% treated with anthracyclines. Eur Heart J Cardiovasc Imaging. 2015 Sep;16(9):977-84. DOI: 10.1093/ehjci/jev113

23. Paraskevaidis IA, Farmakis D, Papadopoulos C et al. Two-dimensional strain analysis in patients with hypertrophic cardiomyopathy and normal systolic function: a 12-month follow-up study. Am Heart J. 2009 Sep;158(3):444-50. DOI: 10.1016/j.ahj.2009.06.013

24. Biering-Sørensen T, Hoffmann S, Mogelvang R et al. Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris. Circ Cardiovasc Imaging. 2014 Jan;7(1):58-65.
DOI: 10.1161/CIRCIMAGING.113.000989

25. Ewe SH, Haeck ML, Ng AC et al. Detection of subtle left ventricular systolic dysfunction in patients with significant aortic regurgitation and preserved left ventricular ejection fraction: speckle tracking echocardiographic analysis. Eur Heart J Cardiovasc Imaging. 2015 Sep;16(9):992-9.
DOI: 10.1093/ehjci/jev019

26. Carasso S, Yang H, Woo A et al. Diastolic myocardial mechanics in hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2010 Feb;23(2):164-71.

27. Kato TS, Noda A, Izawa H et al. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation. 2004 Dec 21;110(25):3808-14.
DOI: 10.1016/j.echo.2009.11.022

28. Phelan D, Collier P, Thavendiranathan P et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012 Oct;98(19):1442-8. DOI: 10.1136/heartjnl-2012-302353

29. Saad A, Arbucci R, Rousse G et al. Perfiles ecocardiográficos del strain 2D permiten diferenciar a la amiloidosis cardíaca de la miocardiopatía hipertrófica con fracción de eyección conservada. Rev Argent Cardiol. 2018;86:410-6.
DOI: 10.7775/rac.es.v86.i6.14239

30. Liu D, Hu K, Niemann M et al. Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013 Nov;6(6):1066-72.
DOI: 10.1161/CIRCIMAGING.113.000683

31. Ng AC, Bertini M, Borleffs CJ, Delgado V, Boersma E, Piers SR, Thijssen J, Nucifora G, Shanks M, Ewe SH, Biffi M, van de Veire NR, Leung DY, Schalij MJ, Bax JJ. Predictors of death and occurrence of appropriate implantable defibrillator therapies in patients with ischemic cardiomyopathy. Am J Cardiol. 2010 Dec 1; 106(11):1566-73.
DOI: 10.1016/j.amjcard.2010.07.029

32. Park JJ, Park JB, Park JH et al. Global Longitudinal Strain to Predict Mortality in Patients With Acute Heart Failure. J Am Coll Cardiol. 2018 May 8;71(18):1947-57.
DOI: 10.1016/j.jacc.2018.02.064

33. Rangel I, Gonçalves A, de Sousa C et al. Global longitudinal strain as a potential prognostic marker in patients with chronic heart failure and systolic dysfunction. Rev Port Cardiol. 2014 Jul-Aug;33(7-8):403-9. DOI: 10.1016/j.repc.2014.01.023

34. Gheorghiade M, Bonow RO. Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation. 1998 Jan 27;97(3):282-9. DOI: 10.1161/01.cir.97.3.282

35. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017 Oct;14(10):591-602.
DOI: 10.1038/nrcardio.2017.65

36. Yancy CW, Lopatin M, Stevenson LW et al. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J Am Coll Cardiol. 2006 Jan 3;47(1):76-84. DOI: 10.1016/j.jacc.2005.09.022

37. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13(6):368-78.
DOI: 10.1038/nrcardio.2016.25