Contribution of Virtual Reality Environments and Artificial Intelligence for Alzheimer

Main Article Content

Claude Frasson Hamdi Ben Abdessalem

Abstract

Alzheimer’s Disease (AD) is one of the most crucial diseases of our century affecting millions of persons every year. Negative emotions such as anxiety, frustration, and apathy are common in AD patients which reduce their wellbeing significantly. Virtual Reality is a means of providing the patients with a sense of presence in an environment that isolates them from external factors able to induce negative emotions. In this goal we have developed several interactive virtual environments able to relax the patients and reduce negative emotions. Virtual travels, natural environments, music therapy, Zootherapy, discovering environments can be used to calm the patients. Artificial Intelligence can bring a valuable contribution if these environments can be modified dynamically according to brainwaves reactions. Neurofeedback techniques can be used to adapt the virtual environments in order to dynamically reduce negative emotions and foster positive emotions. We will present several examples of interactive virtual environments driven by the brain of Alzheimer’s patients and able to improve their cognitive capabilities.

Keywords: Healthcare Applications, Virtual Reality, Cognitive Environments, Alzheimer’s Disease, Immersive Environments, Emotions, EEG Sensors

Article Details

How to Cite
FRASSON, Claude; ABDESSALEM, Hamdi Ben. Contribution of Virtual Reality Environments and Artificial Intelligence for Alzheimer. Medical Research Archives, [S.l.], v. 10, n. 9, sep. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3054>. Date accessed: 03 jan. 2025. doi: https://doi.org/10.18103/mra.v10i9.3054.
Section
Research Articles

References

1. Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11(3):332-384. doi:10.1016/j.jalz.2015.02.003
2. Landes AM, Sperry SD, Strauss ME, Geldmacher DS. Apathy in Alzheimer’s Disease. J Am Geriatr Soc. 2001;49(12):1700-1707. doi:10.1046/j.1532-5415.2001.49282.x
3. Lawton MP, Van Haitsma K, Klapper J. Observed Affect in Nursing Home Residents with Alzheimer’s Disease. J Gerontol B Psychol Sci Soc Sci. 1996;51B(1):P3-P14. doi:10.1093/geronb/51B.1.P3
4. Coyle H, Traynor V, Solowij N. Computerized and Virtual Reality Cognitive Training for Individuals at High Risk of Cognitive Decline: Systematic Review of the Literature. Am J Geriatr Psychiatry. 2015;23(4):335-359. doi:10.1016/j.jagp.2014.04.009
5. Hill NTM, Mowszowski L, Naismith SL, Chadwick VL, Valenzuela M, Lampit A. Computerized Cognitive Training in Older Adults With Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Am J Psychiatry. 2016;174(4):329-340. doi:10.1176/appi.ajp.2016.16030360
6. Manera V, Chapoulie E, Bourgeois J, et al. A Feasibility Study with Image-Based Rendered Virtual Reality in Patients with Mild Cognitive Impairment and Dementia. Chao L, ed. PLOS ONE. 2016;11(3):e0151487. doi:10.1371/journal.pone.0151487
7. Biocca F. The Cyborg’s Dilemma: Progressive Embodiment in Virtual Environments [1]. J Comput-Mediat Commun. 2006;3(2):0-0. doi:10.1111/j.1083-6101.1997.tb00070.x
8. Ghali R, Ben Abdessalem H, Frasson C. Improving Intuitive Reasoning through Assistance Strategies in a Virtual Reality Game. In: The 30th International Flairs Conference. ; 2017:382-387.
9. Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J Pers Soc Psychol. 1988;54(6):1063-1070. doi:10.1037/0022-3514.54.6.1063
10. Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. Int J Aviat Psychol. 1993;3(3):203-220. doi:10.1207/s15327108ijap0303_3
11. Lallemand C, Koenig V, Gronier G, Martin R. Création et validation d’une version française du questionnaire AttrakDiff pour l’évaluation de l’expérience utilisateur des systèmes interactifs. Eur Rev Appl Psychol. 2015;65(5):239-252. doi:10.1016/j.erap.2015.08.002
12. Brodal HP, Osnes B, Specht K. Listening to Rhythmic Music Reduces Connectivity within the Basal Ganglia and the Reward System. Front Neurosci. 2017;11. doi:10.3389/fnins.2017.00153
13. Trost W, Frühholz S, Schön D, et al. Getting the beat: Entrainment of brain activity by musical rhythm and pleasantness. NeuroImage. 2014;103:55-64. doi:10.1016/j.neuroimage.2014.09.009
14. Phillips-Silver J, Trainor LJ. Feeling the Beat: Movement Influences Infant Rhythm Perception. Science. 2005;308(5727):1430-1430. doi:10.1126/science.1110922
15. Dutcher JM, Creswell JD. The role of brain reward pathways in stress resilience and health. Neurosci Biobehav Rev. 2018;95:559-567. doi:10.1016/j.neubiorev.2018.10.014
16. Byrns A, Abdessalem HB, Cuesta M, Bruneau MA, Belleville S, Frasson C. EEG Analysis of the Contribution of Music Therapy and Virtual Reality to the Improvement of Cognition in Alzheimer’s Disease. J Biomed Sci Eng. 2020;13(08):187-201. doi:10.4236/jbise.2020.138018
17. de la Torre-Luque A, Caparros-Gonzalez RA, Bastard T, Vico FJ, Buela-Casal G. Acute stress recovery through listening to Melomics relaxing music: A randomized controlled trial. Nord J Music Ther. 2017;26(2):124-141. doi:10.1080/08098131.2015.1131186
18. Rose FD, Brooks BarbaraM, Rizzo AA. Virtual Reality in Brain Damage Rehabilitation: Review. Cyberpsychol Behav. 2005;8(3):241-262. doi:10.1089/cpb.2005.8.241
19. Gorini A, Riva G. Virtual reality in anxiety disorders: the past and the future. Expert Rev Neurother. 2008;8(2):215-233. doi:10.1586/14737175.8.2.215
20. Alvarez RP, Johnson L, Grillon C. Contextual-specificity of short-delay extinction in humans: Renewal of fear-potentiated startle in a virtual environment. Learn Mem. 2007;14(4):247-253. doi:10.1101/lm.493707
21. Pedraza-Hueso M, Martín-Calzón S, Díaz-Pernas FJ, Martínez-Zarzuela M. Rehabilitation Using Kinect-based Games and Virtual Reality. Procedia Comput Sci. 2015;75:161-168. doi:10.1016/j.procs.2015.12.233
22. Ben Abdessalem H, Byrns A, Cuesta M, et al. Application of Virtual Travel for Alzheimer’s Disease: In: Proceedings of the 9th International Conference on Sensor Networks. SCITEPRESS - Science and Technology Publications; 2020:52-60. doi:10.5220/0008976700520060
23. Choi K, Suk HJ. Dynamic lighting system for the learning environment: performance of elementary students. Opt Express. 2016;24(10):A907. doi:10.1364/OE.24.00A907
24. Minguillon J, Lopez-Gordo MA, Renedo-Criado DA, Sanchez-Carrion MJ, Pelayo F. Blue lighting accelerates post-stress relaxation: Results of a preliminary study. Rao H, ed. PLOS ONE. 2017;12(10):e0186399. doi:10.1371/journal.pone.0186399
25. Fung S chun. Canine-assisted reading programs for children with special educational needs: rationale and recommendations for the use of dogs in assisting learning. Educ Rev. 2017;69(4):435-450. doi:10.1080/00131911.2016.1228611
26. Richeson NE. Effects of animal-assisted therapy on agitated behaviors and social interactions of older adults with dementia. Am J Alzheimers Dis Dementiasr. 2003;18(6):353-358. doi:10.1177/153331750301800610
27. McCabe BW, Baun MM, Speich D, Agrawal S. Resident Dog in the Alzheimer’s Special Care Unit. West J Nurs Res. 2002;24(6):684-696. doi:10.1177/019394502320555421
28. Ben Abdessalem H, Ai Y, Marulasidda Swamy KS, Frasson C. Virtual Reality Zoo Therapy for Alzheimer’s Disease Using Real-Time Gesture Recognition. In: Vlamos P, ed. GeNeDis 2020. Vol 1338. Advances in Experimental Medicine and Biology. Springer International Publishing; 2021:97-105. doi:10.1007/978-3-030-78775-2_12