Burgeoning Data on BTK Inactivating Mutations in Lymphomagenesis and Therapeutic Resistance

Main Article Content

Carla Barrientos Risso Daniel Tsai Skye Montoya Jacob Jahn Justin Taylor, M.D. http://orcid.org/0000-0003-4407-6325


The B-cell antigen receptor signaling pathway has been a primary focus in the targeted treatment of B-cell malignancies for the past decade. When aberrantly activated, this pathway initiates a cascade of phosphorylation mediated by several tyrosine kinases, with Bruton’s tyrosine kinase (BTK) being essential among them. Multiple generations of covalent and non-covalent BTK inhibitors have revolutionized therapeutic options for several B-cell lymphomas. However, the use of continuous BTK inhibition is limited by development of resistance resulting from acquired point mutations that allow persistent B-cell receptor signaling. Genomic sequencing of patient samples at disease progression has recently led to the discovery of novel resistance mutations in BTK that result in diminished or absent BTK kinase activity (termed kinase-deficient). However, the mechanisms underlying the potential advantage of kinase-deficient BTK mutations are incompletely understood and still under investigation. In this review, we provide a background of the pathway leading to the development of current therapies that target BTK and review the literature describing kinase-deficient BTK mutations. We propose that BTK inactivating mutations provide an advantage to neoplastic B-lymphocytes in patients with BTK inhibitor resistant B-cell malignancies and highlight potential mechanisms through which BTK kinase-deficient mutations could be acting, either due to differential protein conformation or by behaving as a scaffold for other signaling molecules. Due to the novelty of these mutations and their increasing rate of incidence over the last decade, it is imperative to continue studying BTK kinase deficient mutations across B-cell malignancies and to propose alternate therapies that could target them.

Article Details

How to Cite
BARRIENTOS RISSO, Carla et al. Burgeoning Data on BTK Inactivating Mutations in Lymphomagenesis and Therapeutic Resistance. Medical Research Archives, [S.l.], v. 10, n. 10, oct. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3182>. Date accessed: 03 dec. 2022. doi: https://doi.org/10.18103/mra.v10i10.3182.
Review Articles


1. Efremov DG, Turkalj S, Laurenti L. Mechanisms of B Cell Receptor Activation and Responses to B Cell Receptor Inhibitors in B Cell Malignancies. Cancers (Basel). 2020;12(6):1396. doi:10.3390/cancers12061396
2. Jensen JL, Mato AR, Pena C, Roeker LE, Coombs CC. The potential of pirtobrutinib in multiple B-cell malignancies. Ther Adv Hematol. 2022;13:20406207221101696. doi:10.1177/20406207221101697
3. Corneth OBJ, Klein Wolterink RGJ, Hendriks RW. BTK Signaling in B Cell Differentiation and Autoimmunity. Curr Top Microbiol Immunol. 2016;393:67-105. doi:10.1007/82_2015_478
4. Burger JA. BTK Inhibitors: present and future. Cancer J. 2019;25(6):386-393. doi:10.1097/PPO.0000000000000412
5. Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer. 2018;17:57. doi:10.1186/s12943-018-0779-z
6. Kueffer LE, Joseph RE, Andreotti AH. Reining in BTK: Interdomain Interactions and Their Importance in the Regulatory Control of BTK. Frontiers in Cell and Developmental Biology. 2021;9. Accessed August 18, 2022. https://www.frontiersin.org/articles/10.3389/fcell.2021.655489
7. Allen JC, Talab F, Slupsky JR. Targeting B-cell receptor signaling in leukemia and lymphoma: how and why? Int J Hematol Oncol. 2016;5(1):37-53. doi:10.2217/ijh-2016-0003
8. Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol. 2020;10:591577. doi:10.3389/fonc.2020.591577
9. Jain P, Wang M. Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management. Am J Hematol. 2019;94(6):710-725. doi:10.1002/ajh.25487
10. Young RM, Phelan JD, Wilson WH, Staudt LM. Pathogenic B cell receptor signaling in lymphoid malignancies: new insights to improve treatment. Immunol Rev. 2019;291(1):190-213. doi:10.1111/imr.12792
11. Smith CIE, Burger JA. Resistance Mutations to BTK Inhibitors Originate From the NF-κB but Not From the PI3K-RAS-MAPK Arm of the B Cell Receptor Signaling Pathway. Front Immunol. 2021;12:689472. doi:10.3389/fimmu.2021.689472
12. Wen T, Wang J, Shi Y, Qian H, Liu P. Inhibitors targeting Bruton’s tyrosine kinase in cancers: drug development advances. Leukemia. 2021;35(2):312-332. doi:10.1038/s41375-020-01072-6
13. Estupiñán HY, Berglöf A, Zain R, Smith CIE. Comparative Analysis of BTK Inhibitors and Mechanisms Underlying Adverse Effects. Front Cell Dev Biol. 2021;9:630942. doi:10.3389/fcell.2021.630942
14. Burger JA, Barr PM, Robak T, et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia. 2020;34(3):787-798. doi:10.1038/s41375-019-0602-x
15. Telford C, Kabadi SM, Abhyankar S, et al. Matching-adjusted Indirect Comparisons of the Efficacy and Safety of Acalabrutinib Versus Other Targeted Therapies in Relapsed/ Refractory Mantle Cell Lymphoma. Clin Ther. 2019;41(11):2357-2379.e1. doi:10.1016/j.clinthera.2019.09.012
16. Liu D, Zhao J. Frontline therapies for untreated chronic lymphoid leukemia. Experimental Hematology & Oncology. 2019;8(1):15. doi:10.1186/s40164-019-0139-8
17. Bond DA, Alinari L, Maddocks K. Bruton Tyrosine Kinase Inhibitors for the Treatment of Mantle Cell Lymphoma: Review of Current Evidence and Future Directions. :11.
18. Zhu S, Jung J, Victor E, Arceo J, Gokhale S, Xie P. Clinical Trials of the BTK Inhibitors Ibrutinib and Acalabrutinib in Human Diseases Beyond B Cell Malignancies. Frontiers in Oncology. 2021;11. Accessed August 20, 2022. https://www.frontiersin.org/articles/10.3389/fonc.2021.737943
19. Noy A, de Vos S, Thieblemont C, et al. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood. 2017;129(16):2224-2232. doi:10.1182/blood-2016-10-747345
20. Woyach JA, Ruppert AS, Guinn D, et al. BTKC481S-Mediated Resistance to Ibrutinib in Chronic Lymphocytic Leukemia. J Clin Oncol. 2017;35(13):1437-1443. doi:10.1200/JCO.2016.70.2282
21. Sharma S, Galanina N, Guo A, et al. Identification of a structurally novel BTK mutation that drives ibrutinib resistance in CLL. Oncotarget. 2016;7(42):68833-68841. doi:10.18632/oncotarget.11932
22. Estupiñán HY, Wang Q, Berglöf A, et al. BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib. Leukemia. 2021;35(5):1317-1329. doi:10.1038/s41375-021-01123-6
23. Quinquenel A, Fornecker LM, Letestu R, et al. Prevalence of BTK and PLCG2 mutations in a real-life CLL cohort still on ibrutinib after 3 years: a FILO group study. Blood. 2019;134(7):641-644. doi:10.1182/blood.2019000854
24. Lipsky A, Lamanna N. Managing toxicities of Bruton tyrosine kinase inhibitors. Hematology Am Soc Hematol Educ Program. 2020;2020(1):336-345. doi:10.1182/hematology.2020000118
25. von Hundelshausen P, Siess W. Bleeding by Bruton Tyrosine Kinase-Inhibitors: Dependency on Drug Type and Disease. Cancers (Basel). 2021;13(5):1103. doi:10.3390/cancers13051103
26. Zain R, Vihinen M. Structure-Function Relationships of Covalent and Non-Covalent BTK Inhibitors. Front Immunol. 2021;12:694853. doi:10.3389/fimmu.2021.694853
27. Aslan B, Hubner SE, Fox JA, et al. Vecabrutinib inhibits B-cell receptor signal transduction in chronic lymphocytic leukemia cell types with wild-type or mutant Bruton tyrosine kinase. Haematologica. 2021;107(1):292-297. doi:10.3324/haematol.2021.279158
28. Metz M, Sussman G, Gagnon R, et al. Fenebrutinib in H1 antihistamine-refractory chronic spontaneous urticaria: a randomized phase 2 trial. Nat Med. 2021;27(11):1961-1969. doi:10.1038/s41591-021-01537-w
29. Oh J, Cohen S, Isenberg D, et al. The Safety of Fenebrutinib in a Large Population of Patients With Diverse Autoimmune Indications Supports Investigation in Multiple Sclerosis (MS) (4564). Neurology. 2021;96(15 Supplement). Accessed August 18, 2022. https://n.neurology.org/content/96/15_Supplement/4564
30. Merck Sharp & Dohme LLC. A Phase 2 Study to Evaluate the Efficacy and Safety of MK-1026 in Participants With Hematologic Malignancies. clinicaltrials.gov; 2022. Accessed July 21, 2022. https://clinicaltrials.gov/ct2/show/NCT04728893
31. Mato AR, Shah NN, Jurczak W, et al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a phase 1/2 study. The Lancet. 2021;397(10277):892-901. doi:10.1016/S0140-6736(21)00224-5
32. Wang E, Montoya S, Mi X, et al. Mechanisms of Resistance to Noncovalent Bruton’s Tyrosine Kinase Inhibitors. New England Journal of Medicine. 2022;386(8):735-743. doi:10.1056/NEJMoa2114110
33. Handunnetti SM, Tang CPS, Nguyen T, et al. BTK Leu528Trp - a Potential Secondary Resistance Mechanism Specific for Patients with Chronic Lymphocytic Leukemia Treated with the Next Generation BTK Inhibitor Zanubrutinib. Blood. 2019;134(Supplement_1):170. doi:10.1182/blood-2019-125488
34. Dhami K, Chakraborty A. Kinase-deficient BTK mutants confer ibrutinib resistance through activation of the kinase HCK. doi:10.1126/scisignal.abg526
35. Qualls D, Salles G. Prospects in the management of patients with follicular lymphoma beyond first-line therapy. Haematologica. 2022;107(1):19-34. doi:10.3324/haematol.2021.278717
36. Hu N, Wang F, Sun T, et al. Follicular lymphoma-associated BTK mutations are inactivating resulting in augmented AKT activation. Clin Cancer Res. 2021;27(8):2301-2313. doi:10.1158/1078-0432.CCR-20-3741
37. Afaghani J, Taylor J. A Moving Target: Inactivating BTK Mutations as Drivers of Follicular Lymphoma. Clinical Cancer Research. 2021;27(8):2123-2125. doi:10.1158/1078-0432.CCR-21-0140
38. Burkart M, Karmali R. Relapsed/Refractory Mantle Cell Lymphoma: Beyond BTK Inhibitors. J Pers Med. 2022;12(3):376. doi:10.3390/jpm12030376
39. Jain P, Kanagal-Shamanna R, Zhang S, et al. Long-term outcomes and mutation profiling of patients with mantle cell lymphoma (MCL) who discontinued ibrutinib. British Journal of Haematology. 2018;183(4):578-587. doi:10.1111/bjh.15567
40. Paulus A, Akhtar S, Yousaf H, et al. Waldenstrom macroglobulinemia cells devoid of BTKC481S or CXCR4WHIM-like mutations acquire resistance to ibrutinib through upregulation of Bcl-2 and AKT resulting in vulnerability towards venetoclax or MK2206 treatment. Blood Cancer J. 2017;7(5):e565. doi:10.1038/bcj.2017.40
41. Alcoceba M, García-Álvarez M, Medina A, et al. MYD88 Mutations: Transforming the Landscape of IgM Monoclonal Gammopathies. Int J Mol Sci. 2022;23(10):5570. doi:10.3390/ijms23105570
42. Ntanasis-Stathopoulos I, Gavriatopoulou M, Fotiou D, Dimopoulos MA. Current and novel BTK inhibitors in Waldenström’s macroglobulinemia. Ther Adv Hematol. 2021;12:2040620721989586. doi:10.1177/2040620721989586
43. Yang G, Buhrlage SJ, Tan L, et al. HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood. 2016;127(25):3237-3252. doi:10.1182/blood-2016-01-695098
44. Xu L, Tsakmaklis N, Yang G, et al. Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia. Blood. 2017;129(18):2519-2525. doi:10.1182/blood-2017-01-761726
45. Montoya S, Soong D, Nguyen N, Affer M, Munamarty SP, Taylor J. Targeted Therapies in Cancer: To Be or Not to Be, Selective. Biomedicines. 2021;9(11):1591. doi:10.3390/biomedicines9111591
46. Yang G, Wang J, Tan L, et al. The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance. Blood. 2021;138(20):1966-1979. doi:10.1182/blood.2021011405
47. Aslan B, Kismali G, Chen LS, et al. Development and characterization of prototypes for in vitro and in vivo mouse models of ibrutinib-resistant CLL. Blood Adv. 2021;5(16):3134-3146. doi:10.1182/bloodadvances.2020003821
48. Wang S, Mondal S, Zhao C, et al. Noncovalent inhibitors reveal BTK gatekeeper and auto-inhibitory residues that control its transforming activity. JCI Insight. 4(12):e127566. doi:10.1172/jci.insight.127566
49. Krysiak K, Gomez F, White BS, et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood. 2017;129(4):473-483. doi:10.1182/blood-2016-07-729954
50. Reddy A, Zhang J, Davis NS, et al. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell. 2017;171(2):481-494.e15. doi:10.1016/j.cell.2017.09.027
51. Maddocks KJ, Ruppert AS, Lozanski G, et al. Etiology of Ibrutinib Therapy Discontinuation and Outcomes in Patients With Chronic Lymphocytic Leukemia. JAMA Oncology. 2015;1(1):80-87. doi:10.1001/jamaoncol.2014.218
52. Middendorp S, Zijlstra AJE, Kersseboom R, Dingjan GM, Jumaa H, Hendriks RW. Tumor suppressor function of Bruton tyrosine kinase is independent of its catalytic activity. Blood. 2005;105(1):259-265. doi:10.1182/blood-2004-07-2708
53. Hamasy A, Wang Q, Blomberg KEM, et al. Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant. Leukemia. 2017;31(1):177-185. doi:10.1038/leu.2016.153
54. Lampson BL, Brown JR. Are BTK and PLCG2 mutations necessary and sufficient for ibrutinib resistance in chronic lymphocytic leukemia? Expert Rev Hematol. 2018;11(3):185-194. doi:10.1080/17474086.2018.1435268
55. Wist M, Meier L, Gutman O, et al. Noncatalytic Bruton’s tyrosine kinase activates PLCγ2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells. J Biol Chem. 2020;295(17):5717-5736. doi:10.1074/jbc.RA119.011946
56. de Rooij MFM, Kuil A, Kater AP, Kersten MJ, Pals ST, Spaargaren M. Ibrutinib and idelalisib synergistically target BCR-controlled adhesion in MCL and CLL: a rationale for combination therapy. Blood. 2015;125(14):2306-2309. doi:10.1182/blood-2014-12-619163
57. Spriano F, Tarantelli C, Gaudio E, et al. Single and combined BTK and PI3Kδ inhibition with acalabrutinib and ACP-319 in pre-clinical models of aggressive lymphomas. British Journal of Haematology. 2019;187(5):595-601. doi:10.1111/bjh.16118
58. Barr PM, Smith SD, Roschewski MJ, et al. Phase 1/2 study of acalabrutinib and the PI3K delta inhibitor ACP-319 in relapsed/refractory B-cell Non-Hodgkin lymphoma. Leukemia & Lymphoma. 2022;63(7):1728-1732. doi:10.1080/10428194.2022.2043301
59. Davids MS, Kim HT, Nicotra A, et al. Umbralisib in combination with ibrutinib in patients with relapsed or refractory chronic lymphocytic leukaemia or mantle cell lymphoma: a multicentre phase 1-1b study. Lancet Haematol. 2019;6(1):e38-e47. doi:10.1016/S2352-3026(18)30196-0
60. Dobrovolsky D, Wang ES, Morrow S, et al. Bruton tyrosine kinase degradation as a therapeutic strategy for cancer. Blood. 2019;133(9):952-961. doi:10.1182/blood-2018-07-862953
61. Wang H, Zhang W, Yang J, Zhou K. The resistance mechanisms and treatment strategies of BTK inhibitors in B-cell lymphoma. Hematol Oncol. 2021;39(5):605-615. doi:10.1002/hon.2933
62. Duarte DP, Lamontanara AJ, La Sala G, et al. Btk SH2-kinase interface is critical for allosteric kinase activation and its targeting inhibits B-cell neoplasms. Nat Commun. 2020;11(1):2319. doi:10.1038/s41467-020-16128-5
63. Kanagal-Shamanna R, Jain P, Patel KP, et al. Targeted multigene deep sequencing of Bruton tyrosine kinase inhibitor-resistant chronic lymphocytic leukemia with disease progression and Richter transformation. Cancer. 2019;125(4):559-574. doi:10.1002/cncr.31831
64. Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer. 2018;18(3):148-167. doi:10.1038/nrc.2017.121
65. Le Gouill S, Morschhauser F, Chiron D, et al. Ibrutinib, obinutuzumab, and venetoclax in relapsed and untreated patients with mantle cell lymphoma: a phase 1/2 trial. Blood. 2021;137(7):877-887. doi:10.1182/blood.2020008727
66. Maddocks K. Building on BTK inhibition in MCL. Blood. 2021;137(7):861-862. doi:10.1182/blood.2020009781
67. Lewis KL, Cheah CY. Non-Covalent BTK Inhibitors—The New BTKids on the Block for B-Cell Malignancies. Journal of Personalized Medicine. 2021;11(8):764. doi:10.3390/jpm11080764
68. Yang G, Wang J, Tan L, et al. The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance. Blood. 2021;138(20):1966-1979. doi:10.1182/blood.2021011405
69. Sedlarikova L, Petrackova A, Papajik T, Turcsanyi P, Kriegova E. Resistance-Associated Mutations in Chronic Lymphocytic Leukemia Patients Treated With Novel Agents. Front Oncol. 2020;10:894. doi:10.3389/fonc.2020.00894
70. Zorba A, Nguyen C, Xu Y, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci USA. 2018;115(31). doi:10.1073/pnas.1803662115
71. Kong W, Sender S, Taher L, et al. BTK and PI3K Inhibitors Reveal Synergistic Inhibitory Anti-Tumoral Effects in Canine Diffuse Large B-Cell Lymphoma Cells. Int J Mol Sci. 2021;22(23):12673. doi:10.3390/ijms222312673
72. Fowler N. Kinase inhibitors in CLL: drawing the roadmap. Blood. 2021;137(20):2717-2719. doi:10.1182/blood.2020010052
73. Acerta Pharma BV. A Phase 1/2 Proof-of-Concept Study of the Combination of ACP-196 and ACP-319 in Subjects With B-Cell Malignancies. clinicaltrials.gov; 2022. Accessed July 28, 2022. https://clinicaltrials.gov/ct2/show/NCT02328014