Neuroimaging Findings in Symptomatic Hypertensive Encephalopathy

Main Article Content

Miguel Angel Bertoni Thomas Webb Ibrahim Balogun Gordon Ellul Amod Dalvi Hardeep Baht George Thomas Saidu Abubakar Gunaratanam Gunathilaghan Rami Abdallah Olobunmi Omojowolo David Hargroves


To assess the relevance clinicians and radiologists assign to making hypertension (HTN) explicit in acutely symptomatic subjects admitted for either stroke, confusion or cognitive deficit, a revision was carried out of cases discussed in our institution in the last eleven years, at either the Neuroradiology-Stroke or the Neuropsychiatry multidisciplinary meetings (MDTs). Consistency of the provided clinical information and radiological findings concerning HTN were checked in 11810 subjects (Group 1), since both influence neuroimaging interpretation, diagnosis and management.

Similar information was collected in a subgroup of 25 subjects (Group 2), with signs of stroke included in Group 1 in whom there was pre-existent history of severe HTN, who were evaluated with multimodality neuroimaging in 48 hours from admission and who had improved clinically in 72 hours.

The word “hypertension” included in the initial neuroimaging request, blood pressure (BP) levels on admission, radiology reports describing intra axial bleed, mentioning “hypertensive encephalopathy”, “chronic hypertensive encephalopathy”, “hypertensive microbleeds”, “amyloid microbleeds”, features and quantification of cerebral small vessel disease (CSVD), a non-specific pattern of cortical atrophy, dolicoarteriopathy, presence and degree of carotid or vertebrobasilar stenosis were tabled.

Electronic records of blood pressure (BP) were available in 10003/11810 cases and in written notes in 1807/11810; 1582/11810 were not hypertensive and 8421/11810 hypertensive. Imaging requests did explicitly include the word “hypertension” in 1184/11810.

Radiology reported acute intracranial bleed on admission in 1516/11810, hypertensive encephalopathy in 248/11810, chronic hypertensive encephalopathy in 148/11810, hypertensive-type microbleeds in 295/11810, amyloid-type microbleeds in 390/11810, SVD features without quantification in 1554/11810, SVD 1/3 in 577/11810, SVD 2/3 in 1402/11810, SVD 3/3 in 776/11810, non-specific cerebral atrophy in 800/11810, vessel tortuosity in 128/11810 and significant carotid or vertebrobasilar stenosis in 1292/11810 of cases. On neuroimaging revision, one or more HTN features were found in 10311/11810 cases.

In group 2 mean systolic BP on admission was 193mmHg, diastolic 104mmHg, age 55 years, 15/25 had PRES, 7/25 acute on chronic hypertensive encephalopathy, 2/25 CAA and 1/25 normotensive PRES. HTN findings were reported in 22/25 cases.

Results suggest an initial underestimation of HTN by both referrers and radiologists in acutely symptomatic subjects, later identified and characterised when reviewed and discussed at MDTs.

Article Details

How to Cite
BERTONI, Miguel Angel et al. Neuroimaging Findings in Symptomatic Hypertensive Encephalopathy. Medical Research Archives, [S.l.], v. 10, n. 11, nov. 2022. ISSN 2375-1924. Available at: <>. Date accessed: 17 june 2024. doi:
Research Articles


Ezzati M, Zhou B, Carrillo-Larco R, Danaei G, Riley L, Paciorek R et al: Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. 2021 The Lancet 398 (10304): 957-980.

Tu N Nguyen, Clara K Chow: Global and national high blood pressure burden and control, The Lancet 2021; 398(10304), 923-933. ISSN 0140-6736,

Nadar, S. and G. Y. H. Lip (2009). Hypertension. Oxford, Oxford University Press.

Mills, K.T., Stefanescu, A. & He, J. The global epidemiology of hypertension. Nat Rev Nephrol 16, 223–237 (2020).

Global burden of disease risk factors collaborators. Global, regional and national comparatrive risk assessment of 84 behavioural, environmental and occupational , and metabolic rosks or clusters of risks for the Global Burden of Disease Study 2017. Lancet 2018;392:1923-1994.

Pathak A, Kumar P, Pandit A, K, Chakravarty K, Misra S, Yadav A, K, Prasad K: Is Prevalence of Hypertension Increasing in First-Ever Stroke Patients?: A Hospital-Based Cross-Sectional Study. Ann Neurosci 2018;25:219-222. doi: 10.1159/000487066

Donkor ES. Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res Treat. 2018 Nov 27;2018:3238165. doi: 10.1155/2018/3238165. PMID: 30598741; PMCID: PMC6288566.

Lopez AD, Mahers CD, Ezzati M, Jamison DT, Murray CJ: Global and regional burden of disease and risk factors, 2001: Systematic Analysis of Population Health Data. Lancet 2006;3671747-1757.

Johnson W., Nguyen M.L., Patel R. Hypertension Crisis in the Emergency Department. Cardiol. Clin. 2012;30:533–543. doi: 10.1016/j.ccl.2012.07.011

Tocci G., Sciarretta S., Volpe M. Development of heart failure in recent hypertension trials. J. Hypertens. 2008;26:1477–1486. doi: 10.1097/HJH.0b013e3282fe1d3d

Balahura AM, Moroi ȘI, Scafa-Udrişte A, Weiss E, Japie C, Bartoş D, Bădilă E. The Management of Hypertensive Emergencies-Is There a "Magical" Prescription for All? J Clin Med. 2022 May 31;11(11):3138. doi: 10.3390/jcm11113138. PMID: 35683521; PMCID: PMC9181665.

Wenzel UO, Kemper C, Bode M. The role of complement in arterial hypertension and hypertensive end organ damage. Br J Pharmacol. 2021 Jul;178(14):2849-2862. doi: 10.1111/bph.15171. Epub 2020 Aug 19. PMID: 32585035.

Gebremedhin D, Gopalakrishnan S, Harder DR. Endogenous events modulating myogenic regulation of cerebrovascular function. Curr Vasc Pharmacol. 2014;12(6):810-7. doi: 10.2174/15701611113116660153. PMID: 24066934.

Cipolla M: The Cerebral Circulation, Morgan & Claypool Life Sciences, 2010, PMID 21452434

Cipolla MJ, Liebeskind DS, Chan SL. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab. 2018 Dec;38(12):2129-2149. doi: 10.1177/0271678X18800589. Epub 2018 Sep 10. PMID: 30198826; PMCID: PMC6282213.

Strandgaard S, Olesen J, Skinhoj E, Lassen NA. Autoregulation of brain circulation in severe arterial hypertension. Br Med J. 1973 Mar 3;1(5852):507-10. doi: 10.1136/bmj.1.5852.507. PMID: 4692673; PMCID: PMC1588676.

Barry DI, Strandgaard S, Graham DI, Braendstrup O, Svendsen UG, Vorstrup S, Hemmingsen R, Bolwig TG. Cerebral blood flow in rats with renal and spontaneous hypertension: resetting of the lower limit of autoregulation. J Cereb Blood Flow Metab. 1982 Sep;2(3):347-53. doi: 10.1038/jcbfm.1982.35. PMID: 7096459.

Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994 Oct;36(4):557-65. doi: 10.1002/ana.410360404. PMID: 7944288.

Rennels M, Nelson E. Capillary innervation in the mammalian central nervous system: an electron microscope demonstration (1). Am J Anat. 1975; 144: pp. 233–241

Cipolla MJ, Li Rui, Vitullo L. Perivascular innervation of penetrating brain parenchymal arterioles. J Cardiovasc Pharm. 2004; 44(1): pp. 1–8.10.1097/00005344-200407000-00001

Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D. Penetrating arterioles are the bottleneck in the perfusion of neocortex. Proc Natl Acad Sci USA. 2007; 104: pp. 365–370.10.1073/pnas.0609551104

Wei L, Otsuka T, Acuff V, Bereczki D, Pettigrew K, Patlak C, Fenstermacher J. The velocities of red cell and plasma flows through parenchymal microvessels of rat brain are decreased by pentobarbital. J Cereb Blood Flow Metab. 1993; 13: pp. 487–497

Jacob M, Chappell D, Becker BF. Regulation of blood flow and volume exchange across the microcirculation. Crit Care. 2016 Oct 21;20(1):319. doi: 10.1186/s13054-016-1485-0. PMID: 27765054; PMCID: PMC5073467.

Sokolova IA, Manukhina EB, Blinkov SM, Koshelev VB, Pinelis VG, Rodionov IM. Rare-faction of the arterioles and capillary network in the brain of rats with different forms of hypertension. Microvasc Res. 1985; 30: pp. 1–9.

Punyaratabandhu N, Dechadilok P, Triampo W, Katavetin P. Hydrodynamic Model for Renal Microvascular Filtration: Effects of Physiological and Hemodynamic Changes on Glomerular Size-selectivity. Microcirculation. 2022 Jul 25:e12779. doi: 10.1111/micc.12779. Epub ahead of print. PMID: 35879876.

Sokolova IA, Manukhina EB, Blinkov SM, Koshelev VB, Pinelis VG, Rodionov IM. Rarefication of the arterioles and capillary network in the brain of rats with different forms of hypertension. Microvasc Res. 1985 Jul;30(1):1-9. doi: 10.1016/0026-2862(85)90032-9. PMID: 4021832.

Feihl F, Liaudet L, Waeber B. The macrocirculation and microcirculation of hypertension. Curr Hypertens Rep. 2009 Jun;11(3):182-9. doi: 10.1007/s11906-009-0033-6. PMID: 19442327.

Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013 Jun 15;304(12):H1598-614. doi: 10.1152/ajpheart.00490.2012. Epub 2013 Apr 12. PMID: 23585139; PMCID: PMC4280158.

Cipolla MJ, Liebeskind DS, Chan SL. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab. 2018 Dec;38(12):2129-2149. doi: 10.1177/0271678X18800589. Epub 2018 Sep 10. PMID: 30198826; PMCID: PMC6282213.

van der Veen PH, Geerlings MI, Visseren FL, et al. Hypertensive Target Organ Damage and Longitudinal Changes in Brain Structure and Function: The Second Manifestations of Arterial Disease-Magnetic Resonance Study. Hypertension. 2015;66(6):1152-1158. doi:10.1161/HYPERTENSIONAHA.115.06268

Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4(8):487-499. doi:10.1016/S1474-4422(05)70141-1

Ungvari, Z., Toth, P., Tarantini, S. et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol 17, 639–654 (2021).

Sinnott SJ, Smeeth L, Williamson E, Douglas IJ. Trends for prevalence and incidence of resistant hypertension: population based cohort study in the UK 1995-2015. BMJ. 2017 Sep 22;358:j3984. doi: 10.1136/bmj.j3984. PMID: 28939590; PMCID: PMC5609092.

Ogata J, Yamanishi H, Ishibashi0Hueda H: Chapter 2: Pathology of cerebral small vessel disease, in Pantoni L, Gorelick P: Cerebral small vessel disease. Cambridge University Press, 2014: 4-15.

Khan U, Porteous L, Hassan A, Markus HS. Risk factor profile of cerebral small vessel disease and its subtypes. J Neurol Neurosurg Psychiatry. 2007;78(7):702-706. doi:10.1136/jnnp.2006.103549

Hilal S, Mok V, Youn YC, Wong A, Ikram MK, Chen CL. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries. J Neurol Neurosurg Psychiatry. 2017 Aug;88(8):669-674. doi: 10.1136/jnnp-2016-315324. Epub 2017 Jun 9. PMID: 28600443.

Liu Y, Dong YH, Lyu PY, Chen WH, Li R. Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment. Chin Med J (Engl). 2018 Mar 5;131(5):615-619. doi: 10.4103/0366-6999.226069. PMID: 29483399; PMCID: PMC585068

Quick S, Moss J, Rajani RM, Williams A. A Vessel for Change: Endothelial Dysfunction in Cerebral Small Vessel Disease. Trends Neurosci. 2021 Apr;44(4):289-305. doi: 10.1016/j.tins.2020.11.003. Epub 2020 Dec 8. PMID: 33308877.

Pantoni L. Chapeter 1: Definition and classification of small vessel diseases, in Pantoni L, Gorelick P: Cerebral small vessel disease, Cambridge University Press 2014:1-3.

Biffi A, Greenberg SM. Cerebral amyloid angiopathy: a systematic review. J Clin Neurol 2011;7:1-9.

Schmidt R, Cavalieri M, Loitfelder M: Chapter 27: Cerebral small vessel disease imaging as a surrogate marker for clinical trials. In Pantoni L, Gorelick P: Cerebral small vessel disease, Cambridge University Press. 2014:336-346.

Fazekas F, Niederkorn K, Schmidt R, Offenbacher H, Horner S, Bertha G et al. White matter signal abnormalities in normal individuals: correlation with carotid ultrasonography, cerebral blood flow measurements, and cerebrovascular risk factors. Stroke. 1988;19(10):1285-1288. doi:10.1161/01.str.19.10.1285

de Leeuw FE, de Groot JC, Oudkerk M, et al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain. 2002;125(Pt 4):765-772. doi:10.1093/brain/awf077

Jeerakathil T, Wolf PA, Beiser A, et al. Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study. Stroke. 2004;35(8):1857-1861. doi:10.1161/01.STR.0000135226.53499.85

Poels MM, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke. 2010;41(10 Suppl):S103-S106. doi:10.1161/STROKEAHA.110.595181

van Ommen F, Dankbaar JW, Zhu G, Wolman DN, Heit JJ, Kauw F, et al: Virtual monochromatic dual-energy CT reconstructions improve detection of cerebral infarct in patients with suspicion of stroke. Neuroradiology. 2021 Jan;63(1):41-49. doi: 10.1007/s00234-020-02492-y. Epub 2020 Jul 29. PMID: 32728777; PMCID: PMC7803871.

Standards for radiology events and learning meetings. The Royal College of Radiology, January 2020, accessed on 1st February 2022,

Price RS, Kasner SE. Hypertension and hypertensive encephalopathy. Handb Clin Neurol. 2014;119:161-7. doi: 10.1016/B978-0-7020-4086-3.00012-6. PMID: 24365295.

Papadopoulos DP, Mourouzis I, Thomopoulos C, Makris T, Papademetriou V. Hypertension crisis. Blood Press. 2010 Dec;19(6):328-36. doi: 10.3109/08037051.2010.488052. Epub 2010 May 27. PMID: 20504242.

Osborn A: Acquired Metabolic and Systemic Disorders, Chapter 32, pp1017-29, in Osborn A: Osborn’s Brain, 2018 Elsevier, ISBN 978-0-323-4776-5

Okamoto K, Motohashi K, Fujiwara H, Ishihara T, Ninomiya I, Onodera O, Fujii Y. [PRES: Posterior Reversible Encephalopathy Syndrome]. Brain Nerve. 2017 Feb;69(2):129-141. Japanese. doi: 10.11477/mf.1416200653. PMID: 28202821.

Parasher A, Jhamb R. Posterior reversible encephalopathy syndrome (PRES): presentation, diagnosis and treatment. Postgrad Med J. 2020 Oct;96(1140):623-628. doi: 10.1136/postgradmedj-2020-137706. Epub 2020 May 28. PMID: 32467104.

Barber E, Nugzar R, Finkelshtein V, Puzhevsky A, Levy T. Posterior reversible encephalopathy syndrome case report in an untreated, normotensive, ovarian cancer patient in the presence of paraneoplastic antibodies. BMC Neurol. 2020 Sep 2;20(1):330. doi: 10.1186/s12883-020-01913-y. PMID: 32878599; PMCID: PMC7466806.

O'Kane M, Elhalwagy H, Kumar S, Badawi C. Unusual presentation of PRES in the postnatal period. BMJ Case Rep. 2014 Jul 9;2014:bcr2013203406. doi: 10.1136/bcr-2013-203406. PMID: 25008333; PMCID: PMC4091404.

Aduen-Carrillo A, Hernandez-Woodbine MJ, Avendaño-Capriles CA, Ayola-Anaya FN. Initial Normotensive Presentation of a Primigravida With Posterior Reversible Encephalopathy Syndrome: A Case Report. Cureus. 2021 Nov 9;13(11):e19407. doi: 10.7759/cureus.19407. PMID: 34909327; PMCID: PMC8658731.

Hugonnet E, Da Ines D, Boby H, Claise B, Petitcolin V, Lannarei et al. Posterior reversible encephalopathy syndrome (PRES): features on CT and MR imaging. Diagn Interv Imaging. 2013 Jan;94(1):45-52. doi: 10.1016/j.diii.2012.02.005. Epub 2012 Jul 24. PMID: 22835573.

Rodrigues SG, Saraiva P, Marques IB. Optic pathways and brainstem involvement in posterior reversible encephalopathy syndrome. BMJ Case Rep. 2021 Jan 11;14(1):e239130. doi: 10.1136/bcr-2020-239130. PMID: 33431522; PMCID: PMC7802660.

Honda K, Hashimoto S. Brainstem Cerebellum-type Posterior Reversible Encephalopathy Syndrome. Intern Med. 2020 May 15;59(10):1337-1338. doi: 10.2169/internalmedicine.3603-19. Epub 2020 Feb 12. PMID: 32051377; PMCID: PMC7303442.

Cheng X, Li J Lan Y, Liu J, Chen S, Lu G. Cerebrovascular Disease in the Setting of Posterior Reversible Encephalopathy Syndrome. Front Neurol. 2021 Nov 17;12:765333. doi: 10.3389/fneur.2021.765333. PMID: 34867751; PMCID: PMC8635685.

Astarita A, Covella M, Vallelonga F, Cesareo M, Totaro S, Ventre L, Aprà F et al. Hypertensive emergencies and urgencies in emergency departments: a systematic review and meta-analysis. J Hypertens. 2020 Jul;38(7):1203-1210. doi: 10.1097/HJH.0000000000002372. PMID: 32510905.

Naranjo M, Chauhan S, Paul M. Malignant Hypertension. 2022 Apr 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 29939523.

Lewek J, Bielecka-Dąbrowa A, Maciejewski M, Banach M. Pharmacological management of malignant hypertension. Expert Opin Pharmacother. 2020 Jul;21(10):1189-1192. doi: 10.1080/14656566.2020.1732923. Epub 2020 Feb 26. PMID: 32100590

Polgreen LA, Suneja M, Tang F, Carter BL, Polgreen PM. Increasing trend in admissions for malignant hypertension and hypertensive encephalopathy in the United States. Hypertension. 2015 May;65(5):1002-7. doi: 10.1161/HYPERTENSIONAHA.115.05241. Epub 2015 Mar 23. PMID: 25801877.

Kim ST, Park T. Acute and Chronic Effects of Cocaine on Cardiovascular Health. Int J Mol Sci. 2019 Jan 29;20(3):584. doi: 10.3390/ijms20030584. PMID: 30700023; PMCID: PMC6387265.

Goel N, Pullman JM, Coco M. Cocaine and kidney injury: a kaleidoscope of pathology. Clin Kidney J. 2014 Dec;7(6):513-7. doi: 10.1093/ckj/sfu092. Epub 2014 Sep 12. PMID: 25859366; PMCID: PMC4389131.

Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Brooks VL. Neuronal Networks in Hypertension: Recent Advances. Hypertension. 2020 Aug;76(2):300-311. doi: 10.1161/HYPERTENSIONAHA.120.14521. Epub 2020 Jun 29. PMID: 32594802; PMCID: PMC7347452.

Lifson N, Pasquale A, Salloum G, Alpert S. Ophthalmic Manifestations of Posterior Reversible Encephalopathy Syndrome. Neuroophthalmology. 2018 Aug 17;43(3):180-184. doi: 10.1080/01658107.2018.1506938. PMID: 31312242; PMCID: PMC6619982.

Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010 Jul;9(7):689-701. doi: 10.1016/S1474-4422(10)70104-6. PMID: 20610345.

Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013 Aug;12(8):822-38. doi: 10.1016/S1474-4422(13)70124-8. PMID: 23867200; PMCID: PMC3714437.

Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, Joutel A et al. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res. 2018 Sep 1;114(11):1462-1473. doi: 10.1093/cvr/cvy113. PMID: 29726891; PMCID: PMC6455920.

Litak J, Mazurek M, Kulesza B, Szmygin P, Litak J, Kamieniak P, Grochowski C. Cerebral Small Vessel Disease. Int J Mol Sci. 2020 Dec 20;21(24):9729. doi: 10.3390/ijms21249729. PMID: 33419271; PMCID: PMC7766314.

Liu Y, Dong YH, Lyu PY, Chen WH, Li R. Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment. Chin Med J (Engl). 2018 Mar 5;131(5):615-619. doi: 10.4103/0366-6999.226069. PMID: 29483399; PMCID: PMC5850681.

Gychka, S.G., Shults, N.V., Sariipek, N.E., Rybka, V., Malysheva, T., Dibrova, V.A et al. Histological Characterizations of the Brain Vascular Hyalinosis in Patients with Systemic Hypertension-Induced Ischemic Stroke. The FASEB Journal, 34:1-1.

Bagi Z, Brandner DD, Le P, McNeal DW, Gong X, Dou H et al. Vasodilator dysfunction and oligodendrocyte dysmaturation in aging white matter. Ann Neurol. 2018 Jan;83(1):142-152. doi: 10.1002/ana.25129. PMID: 29283444; PMCID: PMC5876126.

Shi Y, Wardlaw JM. Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc Neurol. 2016 Oct 25;1(3):83-92. doi: 10.1136/svn-2016-000035. PMID: 28959468; PMCID: PMC5435198.

Chen YC, Li YH, Lu J, Li WB, Wang JB. Correlation Between the Reduction in Lenticulostriate Arteries Caused by Hypertension and Changes in Brain Metabolism Detected With MRI. AJR Am J Roentgenol. 2016 Feb;206(2):395-400. doi: 10.2214/AJR.15.14514. PMID: 26797370.

Liu Y, Dong YH, Lyu PY, Chen WH, Li R. Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment. Chin Med J (Engl). 2018 Mar 5;131(5):615-619. doi: 10.4103/0366-6999.226069. PMID: 29483399; PMCID: PMC5850681.

Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M, Wallin A. European Task Force on Age-Related White Matter Changes. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001 Jun;32(6):1318-22. doi: 10.1161/01.str.32.6.1318. PMID: 11387493.

Iordanishvili E, Schall M, Loução R, Zimmermann M, Kotetishvili K, Shah NJ et al. Quantitative MRI of cerebral white matter hyperintensities: A new approach towards understanding the underlying pathology. Neuroimage. 2019 Nov 15;202:116077. doi: 10.1016/j.neuroimage.2019.116077. Epub 2019 Aug 6. PMID: 31398433.

Inzitari D, Pracucci G, Poggesi A, Carlucci G, Barkhof F, Chabriat H et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ. 2009 Jul 6;339:b2477. doi: 10.1136/bmj.b2477. PMID: 19581317; PMCID: PMC2714680.

Iordanishvili E, Schall M, Loução R, Zimmermann M, Kotetishvili K, Shah NJ, Oros-Peusquens AM. Quantitative MRI of cerebral white matter hyperintensities: A new approach towards understanding the underlying pathology. Neuroimage. 2019 Nov 15;202:116077. doi: 10.1016/j.neuroimage.2019.116077. Epub 2019 Aug 6. PMID: 31398433.

Huynh TJ, Murphy B, Pettersen JA, Tu H, Sahlas DJ, Zhang L et al. CT perfusion quantification of small-vessel ischemic severity. AJNR Am J Neuroradiol. 2008 Nov;29(10):1831-6. doi: 10.3174/ajnr.A1238. Epub 2008 Sep 3. PMID: 18768729; PMCID: PMC8118954.

van Dijk EJ, Prins ND, Vrooman HA, Hofman A, Koudstaal PJ, Breteler MM. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study. Stroke. 2008 Oct;39(10):2712-9. doi: 10.1161/STROKEAHA.107.513176. Epub 2008 Jul 17. PMID: 18635849.

Cannistraro RJ, Badi M, Eidelman BH, Dickson DW, Middlebrooks EH, Meschia JF. CNS small vessel disease: A clinical review. Neurology. 2019 Jun 11;92(24):1146-1156. doi: 10.1212/WNL.0000000000007654. Epub 2019 May 29. PMID: 31142635; PMCID: PMC6598791.

ALg VS, Werring D: Microaneurysms, cerebral microbleeds and intracerebral haemorrhage, in: Cerebral Microbleeds, Cambridge University Press 2011

Linn J. Imaging of Cerebral Microbleeds. Clin Neuroradiol. 2015 Oct;25 Suppl 2:167-75. doi: 10.1007/s00062-015-0458-z. Epub 2015 Sep 4. PMID: 26337706.

Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jäger HR, Barkhof F. Cerebral Microbleeds: Imaging and Clinical Significance. Radiology. 2018 Apr;287(1):11-28. doi: 10.1148/radiol.2018170803. PMID: 29558307.

Charidimou A, Turc G, Oppenheim C, Yan S, Scheitz JF, Erdur H et al. Microbleeds, Cerebral Hemorrhage, and Functional Outcome After Stroke Thrombolysis. Stroke. 2017 Aug;48(8):2084-2090. doi: 10.1161/STROKEAHA.116.012992. PMID: 28720659.

Charidimou A, Boulouis G, Frosch MP, Baron JC, Pasi M, Albucher JF, et al: The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol. 2022 Aug;21(8):714-725. doi: 10.1016/S1474-4422(22)00208-3. PMID: 35841910; PMCID: PMC9389452.

Scheid R, Preul C, Gruber O, Wiggins C, von Cramon DY. Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T. AJNR Am J Neuroradiol. 2003;24:1049–56.

Akel O, Raju B, Suresh SC, Jumah F, Gupta G, Nanda A. Multiple cerebral hemorrhages in sepsis-disseminated intravascular coagulation versus septic embolism: An image report. Surg Neurol Int. 2021 Apr 26;12:185. doi: 10.25259/SNI_810_2020. PMID: 34084613; PMCID: PMC8168679.

Gaviani P, Mullins ME, Braga TA, Hedley-Whyte ET, Halpern EF, Schaefer PS et al. Improved detection of metastatic melanoma by T2*-weighted imaging. AJNR Am J Neuroradiol. 2006;27:605–8

Sempere-Pérez A, Campistol J, García-Cazorla A, Guillén-Quesada A, Pérez-Muñoz N. Cavernomatosis múltiple cerebral familiar [Multiple familial cerebral cavernomatosis]. Rev Neurol. 2007 Jun 1-15;44(11):657-60. Spanish. PMID: 17557222.

Patel N, Banahan C, Janus J, Horsfield MA, Cox A, Li X et al. Perioperative Cerebral Microbleeds After Adult Cardiac Surgery. Stroke. 2019 Feb;50(2):336-343. doi: 10.1161/STROKEAHA.118.023355. PMID: 30572811; PMCID: PMC6354910.

Bian W, Hess CP, Chang SM, Nelson SJ, Lupo JM. Susceptibility-weighted MR imaging of radiation therapy-induced cerebral microbleeds in patients with glioma: a comparison between 3T and 7T. Neuroradiology. 2014 Feb;56(2):91-6. doi: 10.1007/s00234-013-1297-8. Epub 2013 Nov 27. PMID: 24281386; PMCID: PMC4940363.

Takemori T, Kawamoto T, Morishita M, Hara H, Fukase N, Kawakami Y et al. Clinical Outcome of the Patients With Brain Metastasis from Soft Tissue Sarcomas. Anticancer Res. 2021 Feb;41(2):1027-1034. doi: 10.21873/anticanres.14858. PMID: 33517311.

Chaigneau L, Patrikidou A, Ray-Coquard I, Valentin T, Linassier C, Bay JO et al. Brain Metastases from Adult Sarcoma: Prognostic Factors and Impact of Treatment. A Retrospective Analysis from the French Sarcoma Group (GSF/GETO). Oncologist. 2018 Aug;23(8):948-955. doi: 10.1634/theoncologist.2017-0136. Epub 2018 Jun 22. PMID: 29934413; PMCID: PMC6156185.

Loewenstein D, Rabbat M. Neurological complications of systemic hypertension. Handb Clin Neurol. 2021;177:253-259. doi: 10.1016/B978-0-12-819814-8.00018-4. PMID: 33632444.

Herisson F, Zhou I, Mawet J, Du E, Barfejani AH, Qin T et al. Posterior reversible encephalopathy syndrome in stroke-prone spontaneously hypertensive rats on high-salt diet. J Cereb Blood Flow Metab. 2019 Jul;39(7):1232-1246. doi: 10.1177/0271678X17752795. Epub 2018 Jan 19. PMID: 29350576; PMCID: PMC6668522.

Regenhardt RW, Das AS, Ohtomo R, Lo EH, Ayata C, Gurol ME. Pathophysiology of Lacunar Stroke: History's Mysteries and Modern Interpretations. J Stroke Cerebrovasc Dis. 2019 Aug;28(8):2079-2097. doi: 10.1016/j.jstrokecerebrovasdis.2019.05.006. Epub 2019 May 28. PMID: 31151839; PMCID: PMC7416422.

Fisher CM. Lacunar strokes and infarcts: a review. Neurology. 1982 Aug;32(8):871-6. doi: 10.1212/wnl.32.8.871. PMID: 7048128.

Loeb C. The lacunar syndromes. Eur Neurol. 1989;29 Suppl 2:2-7. doi: 10.1159/000116454. PMID: 2693095.

Giacomozzi S, Caso V, Agnelli G, Acciarresi M, Alberti A, Venti M et al. Lacunar stroke syndromes as predictors of lacunar and non-lacunar infarcts on neuroimaging: a hospital-based study. Intern Emerg Med. 2020 Apr;15(3):429-436. doi: 10.1007/s11739-019-02193-2. Epub 2019 Sep 18. PMID: 31535289.

Chen X, Wang J, Shan Y, Cai W, Liu S, Hu M et al. Cerebral small vessel disease: neuroimaging markers and clinical implication. J Neurol. 2019 Oct;266(10):2347-2362. doi: 10.1007/s00415-018-9077-3. Epub 2018 Oct 5. PMID: 30291424.

Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H, et al: Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol. 2020 Mar;16(3):137-153. doi: 10.1038/s41582-020-0312-z. Epub 2020 Feb 24. PMID: 32094487.

Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun. 2018 Nov 19;9(1):4878. doi: 10.1038/s41467-018-07318-3. PMID: 30451853; PMCID: PMC6242982.

Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015 Jul 16;523(7560):337-41. doi: 10.1038/nature14432. Epub 2015 Jun 1. Erratum in: Nature. 2016 May 12;533(7602):278. PMID: 26030524; PMCID: PMC4506234.

Taoka T, Naganawa S. Glymphatic imaging using MRI. J Magn Reson Imaging. 2020 Jan;51(1):11-24. doi: 10.1002/jmri.26892. Epub 2019 Aug 18. PMID: 31423710.

Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, Yasuno F, Kishimoto T, Naganawa S. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases. Jpn J Radiol. 2017 Apr;35(4):172-178. doi: 10.1007/s11604-017-0617-z. Epub 2017 Feb 14. PMID: 28197821

Kikuta J, Kamagata K, Takabayashi K, Taoka T, Yokota H, Andica C et al. An Investigation of Water Diffusivity Changes along the Perivascular Space in Elderly Subjects with Hypertension. AJNR Am J Neuroradiol. 2022 Jan;43(1):48-55. doi: 10.3174/ajnr.A7334. Epub 2021 Nov 18. PMID: 34794943; PMCID: PMC8757561.

Mortensen KN, Sanggaard S, Mestre H, Lee H, Kostrikov S, Xavier ALR et al. Impaired Glymphatic Transport in Spontaneously Hypertensive Rats. J Neurosci. 2019 Aug 7;39(32):6365-6377. doi: 10.1523/JNEUROSCI.1974-18.2019. Epub 2019 Jun 17. PMID: 31209176; PMCID: PMC6687896.
Yamamoto Y, Ihara M, Tham C, et al. Neuropathological correlates of temporal pole white matter hyperintensities in CADASIL. Stroke 2009;40:2004–11
Kamagata K, Andica C, Shimada K, et al. Effects of arterial stiffness on cerebral white matter integrity in the elderly. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine and the Society for MR Radiographers & Technologists, Virtual; August 8–14, 2020
Kern KC, Wright CB, Bergfield KL, Fitzhugh MC, Chen K, Moeller JR et al. Blood Pressure Control in Aging Predicts Cerebral Atrophy Related to Small-Vessel White Matter Lesions. Front Aging Neurosci. 2017 May 15;9:132. doi: 10.3389/fnagi.2017.00132. PMID: 28555103; PMCID: PMC5430031.

Frey BM, Petersen M, Mayer C, Schulz M, Cheng B, Thomalla G. Characterization of White Matter Hyperintensities in Large-Scale MRI-Studies. Front Neurol. 2019 Mar 26;10:238. doi: 10.3389/fneur.2019.00238. PMID: 30972001; PMCID: PMC6443932.

de Groot M, Ikram MA, Akoudad S, Krestin GP, Hofman A, van der Lugt A et al. Tract-specific white matter degeneration in aging: the Rotterdam Study. Alzheimers Dement. 2015 Mar;11(3):321-30. doi: 10.1016/j.jalz.2014.06.011. Epub 2014 Sep 10. PMID: 25217294.

Fiford CM, Nicholas JM, Biessels GJ, Lane CA, Cardoso MJ, Barnes J. High blood pressure predicts hippocampal atrophy rate in cognitively impaired elders. Alzheimers Dement (Amst). 2020 May 17;12(1):e12035. doi: 10.1002/dad2.12035. PMID: 32587882; PMCID: PMC7308793.

Triantafyllou A, Ferreira JP, Kobayashi M, Micard E, Xie Y, Kearney-Schwartz A et al. Longer Duration of Hypertension and MRI Microvascular Brain Alterations Are Associated with Lower Hippocampal Volumes in Older Individuals with Hypertension. J Alzheimers Dis. 2020;74(1):227-235. doi: 10.3233/JAD-190842. PMID: 32039844; PMCID: PMC7175941.

Naing HL, Teo SP. Impact of Hypertension on Cognitive Decline and Dementia. Ann Geriatr Med Res. 2020 Mar;24(1):15-19. doi: 10.4235/agmr.19.0048. Epub 2020 Mar 18. PMID: 32743317; PMCID: PMC7370774.

Chau ACM, Cheung EYW, Chan KH, Chow WS, Shea YF, Chiu PKC et al. Impaired cerebral blood flow in type 2 diabetes mellitus - A comparative study with subjective cognitive decline, vascular dementia and Alzheimer's disease subjects. Neuroimage Clin. 2020;27:102302. doi: 10.1016/j.nicl.2020.102302. Epub 2020 May 28. PMID: 32521474; PMCID: PMC7284123.

Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004 Aug;15(8):1983-92. doi: 10.1097/01.ASN.0000132474.50966.DA. PMID: 15284284.

Martinez-Quinones P, McCarthy CG, Watts SW, Klee NS, Komic A, Calmasini FB et al. Hypertension Induced Morphological and Physiological Changes in Cells of the Arterial Wall. Am J Hypertens. 2018 Sep 11;31(10):1067-1078. doi: 10.1093/ajh/hpy083. PMID: 29788246; PMCID: PMC6132119.

Falkner B. Cardiac Output Versus Total Peripheral Resistance. Hypertension. 2018 Nov;72(5):1093-1094. doi: 10.1161/HYPERTENSIONAHA.118.11963. PMID: 30354830.

Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018 Mar 15;114(4):529-539. doi: 10.1093/cvr/cvy023. PMID: 29394331; PMCID: PMC5852517.

Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM. Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens (Greenwich). 2011 May;13(5):332-42. doi: 10.1111/j.1751-7176.2011.00471.x. Epub 2011 Apr 21. PMID: 21545394; PMCID: PMC3092159.

Tomiyama H, Ishizu T, Kohro T, Matsumoto C, Higashi Y, Takase B et al. Longitudinal association among endothelial function, arterial stiffness and subclinical organ damage in hypertension. Int J Cardiol. 2018 Feb 15;253:161-166. doi: 10.1016/j.ijcard.2017.11.022. Epub 2017 Nov 12. PMID: 29174285.

Prencipe G, Pellegrino L, Vairo F, Tomaiuolo M, Furio OA. Dolicoarteriopatie (kinking, coiling, tortuosità) delle arterie carotidi e fattori di rischio cardiovascolare [Dolichoarteriopathy (kinking, coiling,tortuosity) of the carotid arteries and cardiovascular risk factors]. Minerva Cardioangiol. 1998 Jan-Feb;46(1-2):1-7. Italian. PMID: 9780615.

Strecker C, Krafft AJ, Kaufhold L, Hüllebrandt M, Weber S, Ludwig U et al. Carotid geometry is an independent predictor of wall thickness - a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk. J Cardiovasc Magn Reson. 2020 Sep 10;22(1):67. doi: 10.1186/s12968-020-00657-5. PMID: 32912285; PMCID: PMC7488078.

Yamazaki M, Uchiyama S. [Pathophysiology of carotid stenosis]. Brain Nerve. 2010 Dec;62(12):1269-75. Japanese. PMID: 21139179.

Wang L, Zhao F, Wang D, Hu S, Liu J, Zhou Z et al. Pressure Drop in Tortuosity/Kinking of the Internal Carotid Artery: Simulation and Clinical Investigation. Biomed Res Int. 2016;2016:2428970. doi: 10.1155/2016/2428970. Epub 2016 Apr 18. PMID: 27195283; PMCID: PMC4852326.

Shang K, Chen X, Cheng C, Luo X, Xu S, Wang W et al. Arterial Tortuosity and Its Correlation with White Matter Hyperintensities in Acute Ischemic Stroke. Neural Plast. 2022 Mar 24;2022:4280410. doi: 10.1155/2022/4280410. PMID: 35369646; PMCID: PMC8970938.