Precision Medicine Shows Promise to Advance the Care of Individuals with Hearing Loss

Main Article Content

Michelle Pei Brett M Colbert Molly R Smeal, AuD Susan H Blanton, PhD Xue Zhong Liu, MD, PhD

Abstract

Hearing loss (HL) is the most common sensory disorder worldwide and arises from a heterogeneous set of genetic and environmental etiologies. Currently, therapy for sensorineural HL is non-specific and limited to amplification devices and implanted neuroprosthetics. Recent advances in the burgeoning field of precision medicine focused on individualizing disease diagnosis and tailoring treatment to each patient’s own biology hold great promise to provide tailored care for hearing loss patients. In this review, we discuss the current diagnostic algorithm and treatment options for hearing loss, the advances in using precision medicine tools to identify specific genetic variants that predispose to or result in hearing loss, the role of genetics in determining surgical outcomes following cochlear implantation, recent advances in gene and stem cell therapies for treating hearing loss, and patient-specific disease modeling using induced pluripotent stem cells. All of these precision medicine techniques will result in improved care for patients based on the precise etiology of their hearing loss.


 

Article Details

How to Cite
PEI, Michelle et al. Precision Medicine Shows Promise to Advance the Care of Individuals with Hearing Loss. Medical Research Archives, [S.l.], v. 10, n. 11, nov. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3298>. Date accessed: 29 mar. 2024. doi: https://doi.org/10.18103/mra.v10i11.3298.
Section
Review Articles

References

1. Haile LM, Kamenov K, Briant PS, et al. Hearing loss prevalence and years lived with disability, 1990-2019: Findings from the Global Burden of Disease Study 2019. The Lancet. 2021;397(10278):996-1009. doi:10.1016/S0140-6736(21)00516-X
2. Alshuaib WB, Al-Kandari JM, Hasan SM. Classification of Hearing Loss. In: Update On Hearing Loss. InTech; 2015. doi:10.5772/61835
3. Ideura M, Nishio S ya, Moteki H, et al. Comprehensive analysis of syndromic hearing loss patients in Japan. Sci Rep. 2019;9(1). doi:10.1038/s41598-019-47141-4
4. Shearer AE, Hildebrand MS, Smith RJH. Hereditary Hearing Loss and Deafness Overview.; 2017:1993-2022.
5. Cohen M, Phillips JA. Genetic approach to evaluation of hearing loss. Otolaryngol Clin North Am. 2012;45(1):25-39. doi:10.1016/j.otc.2011.08.015
6. Vona B, Nanda I, Hofrichter MAH, Shehata-Dieler W, Haaf T. Non-syndromic hearing loss gene identification: A brief history and glimpse into the future. Mol Cell Probes. 2015;29(5):260-270. doi:10.1016/j.mcp.2015.03.008
7. Wroblewska-Seniuk KE, Dabrowski P, Szyfter W, Mazela J. Universal newborn hearing screening: Methods and results, obstacles, and benefits. Pediatr Res. 2017;81(3):415-422. doi:10.1038/pr.2016.250
8. Prasad S, Cucci RA, Green GE, Smith RJH. Genetic testing for hereditary hearing loss: Connexin 26 (GJB2) allele variants and two novel deafness-causing mutations (R32C and 645-648delTAGA). Hum Mutat. 2000;16(6):502-508. doi:10.1002/1098-1004(200012)16:6<502::AID-HUMU7>3.0.CO;2-4
9. Shearer AE, Shen J, Amr S, Morton CC, Smith RJ. A proposal for comprehensive newborn hearing screening to improve identification of deaf and hard-of-hearing children On behalf of the Newborn Hearing Screening Working Group of the National Coordinating Center for the Regional Genetics Networks #. doi:10.1038/s41436
10. Kelsell DP, Dunlop J, Stevens HP, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 1997;387(6628):80-83. doi:10.1038/387080a0
11. Shearer AE, Smith RJH. Genetics: Advances in genetic testing for deafness. Curr Opin Pediatr. 2012;24(6):679-686. doi:10.1097/MOP.0b013e3283588f5e
12. Sang S, Ling J, Liu X, et al. Proband Whole-Exome Sequencing Identified Genes Responsible for Autosomal Recessive Non-Syndromic Hearing Loss in 33 Chinese Nuclear Families. Front Genet. 2019;10. doi:10.3389/fgene.2019.00639
13. Tropitzsch A, Schade-Mann T, Gamerdinger P, et al. Diagnostic Yield of Targeted Hearing Loss Gene Panel Sequencing in a Large German Cohort With a Balanced Age Distribution from a Single Diagnostic Center: An Eight-year Study. Ear Hear. 2022;43(3):1049-1066. doi:10.1097/AUD.0000000000001159
14. Levenson D. New testing guidelines for hearing loss support next-generation sequencing. Am J Med Genet A. 2014;164(7):vii-viii. doi:10.1002/ajmg.a.36643
15. Shearer AE, DeLuca AP, Hildebrand MS, et al. Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci U S A. 2010;107(49):21104-21109. doi:10.1073/pnas.1012989107
16. Tekin D, Yan D, Bademci G, et al. A next-generation sequencing gene panel (MiamiOtoGenes) for comprehensive analysis of deafness genes. Hear Res. 2016;333:179-184. doi:10.1016/j.heares.2016.01.018
17. Shearer AE, Kolbe DL, Azaiez H, et al. Copy number variants are a common cause of non-syndromic hearing loss. Genome Med. 2014;6(5). doi:10.1186/gm554
18. Booth KT, Ghaffar A, Rashid M, et al. Novel loss-of-function mutations in COCH cause autosomal recessive nonsyndromic hearing loss. Hum Genet. 2020;139(12):1565-1574. doi:10.1007/s00439-020-02197-5
19. Lebeko K, Sloan-Heggen CM, Noubiap JJN, et al. Targeted genomic enrichment and massively parallel sequencing identifies novel nonsyndromic hearing impairment pathogenic variants in Cameroonian families. Clin Genet. 2016;90(3):288-290. doi:10.1111/cge.12799
20. Kemerley A, Sloan C, Pfeifer W, Smith R, Drack A. A novel mutation in ACTG1 causing Baraitser-Winter syndrome with extremely variable expressivity in three generations. Ophthalmic Genet. 2017;38(2):152-156. doi:10.3109/13816810.2016.1164196
21. Azaiez H, Booth KT, Bu F, et al. TBC1D24 Mutation Causes Autosomal-Dominant Nonsyndromic Hearing Loss. Hum Mutat. 2014;35(7):819-823. doi:10.1002/humu.22557
22. Mori K, Moteki H, Kobayashi Y, et al. Mutations in LOXHD1 Gene Cause Various Types and Severities of Hearing Loss. Ann Otol Rhinol Laryngol. 2015;124(1_suppl):135S-141S. doi:10.1177/0003489415574067
23. Sakuma N, Moteki H, Azaiez H, et al. Novel PTPRQ Mutations Identified in Three Congenital Hearing Loss Patients With Various Types of Hearing Loss. Ann Otol Rhinol Laryngol. 2015;124(1_suppl):184S-192S. doi:10.1177/0003489415575041
24. Sloan-Heggen CM, Babanejad M, Beheshtian M, et al. Characterising the spectrum of autosomal recessive hereditary hearing loss in Iran. J Med Genet. 2015;52(12):823-829. doi:10.1136/jmedgenet-2015-103389
25. Moon IS, Grant AR, Sagi V, Rehm HL, Stankovic KM. TMPRSS3 Gene Variants With Implications for Auditory Treatment and Counseling. Front Genet. 2021;12. doi:10.3389/fgene.2021.780874
26. Fedick AM, Jalas C, Swaroop A, Smouha EE, Webb BD. Identification of a novel pathogenic OTOF variant causative of nonsyndromic hearing loss with high frequency in the Ashkenazi Jewish population. Appl Clin Genet. 2016;9:141-146. doi:10.2147/TACG.S113828
27. Kannan-Sundhari A, Yan D, Saeidi K, Sahebalzamani A, Blanton SH, Liu XZ. Screening consanguineous families for hearing loss using the miamiotogenes panel. Genet Test Mol Biomark. 2020;24(10):674-680. doi:10.1089/gtmb.2020.0153
28. Yan Y jun, Li Y, Yang T, Huang Q, Wu H. The effect of GJB2 and SLC26A4 gene mutations on rehabilitative outcomes in pediatric cochlear implant patients. Eur Arch Otorhinolaryngol. 2013;270(11):2865-2870. doi:10.1007/s00405-012-2330-y
29. Shang H, Yan D, Tayebi N, et al. Targeted Next-Generation Sequencing of a Deafness Gene Panel (MiamiOtoGenes) Analysis in Families Unsuitable for Linkage Analysis. BioMed Res Int. 2018;2018. doi:10.1155/2018/3103986
30. Asgharzade S, Tabatabaiefar MA, Mohammadi-asl J, Chaleshtori MH. A novel missense mutation in GIPC3 causes sensorineural hearing loss in an Iranian family revealed by targeted next-generation sequencing. Int J Pediatr Otorhinolaryngol. 2018;108:8-11. doi:10.1016/j.ijporl.2018.01.006
31. Taghipour-Sheshdeh A, Nemati-Zargaran F, Zarepour N, et al. A novel pathogenic variant in the MARVELD2 gene causes autosomal recessive non-syndromic hearing loss in an Iranian family. Genomics. 2019;111(4):840-848. doi:10.1016/j.ygeno.2018.05.008
32. Aparisi MJ, Aller E, Fuster-García C, et al. Targeted next generation sequencing for molecular diagnosis of usher syndrome. Orphanet J Rare Dis. 2014;9(1). doi:10.1186/s13023-014-0168-7
33. An J, Yang J, Wang Y, et al. Targeted Next Generation Sequencing Revealed a Novel Homozygous Loss-of-Function Mutation in ILDR1 Gene Causes Autosomal Recessive Nonsyndromic Sensorineural Hearing Loss in a Chinese Family. Front Genet. 2019;10:1. doi:10.3389/fgene.2019.00001
34. Chen Y, Wang Z, Wang Z, et al. Targeted Next-Generation Sequencing in Uyghur Families with Non-Syndromic Sensorineural Hearing Loss. PLOS ONE. 2015;10(5):e0127879. doi:10.1371/journal.pone.0127879
35. Atik T, Onay H, Aykut A, et al. Comprehensive analysis of deafness genes in families with autosomal recessive nonsyndromic hearing loss. PLoS ONE. 2015;10(11). doi:10.1371/journal.pone.0142154
36. Cesca F, Bettella E, Polli R, et al. A novel mutation of the EYA4 gene associated with post-lingual hearing loss in a proband is co-segregating with a novel PAX3 mutation in two congenitally deaf family members. Int J Pediatr Otorhinolaryngol. 2018;104:88-93. doi:10.1016/j.ijporl.2017.10.042
37. Lachgar M, Morín M, Villamar M, Del Castillo I, Moreno-pelayo MÁ. A novel truncating mutation in HOMER2 causes nonsyndromic progressive DFNA68 hearing loss in a Spanish family. Genes. 2021;12(3). doi:10.3390/genes12030411
38. Bai X, Nian S, Feng L, et al. Identification of novel variants in MYO15A, OTOF, and RDX with hearing loss by next-generation sequencing. Mol Genet Genomic Med. 2019;7(8). doi:10.1002/mgg3.808
39. García-García G, Berzal-Serrano A, García-Díaz P, et al. Improving the Management of Patients with Hearing Loss by the Implementation of an NGS Panel in Clinical Practice. Genes. 2020;11(12):1467. doi:10.3390/genes11121467
40. Huang B, Liu Y, Gao X, et al. A novel pore-region mutation, c.887G > A (p.G296D) in KCNQ4, causing hearing loss in a Chinese family with autosomal dominant non-syndromic deafness 2. BMC Med Genet. 2017;18(1). doi:10.1186/s12881-017-0396-5
41. Ghasemnejad T, Shekari Khaniani M, Nouri Nojadeh J, Mansoori Derakhshan S. A novel missense variant in ESRRB gene causing autosomal recessive non-syndromic hearing loss: in silico analysis of a case. BMC Med Genomics. 2022;15(1). doi:10.1186/s12920-022-01165-4
42. Thongpradit S, Jinawath N, Javed A, et al. MITF variants cause nonsyndromic sensorineural hearing loss with autosomal recessive inheritance. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-69633-4
43. Mohammadi Asl J, Saki N, Dehdashtiyan M, Neissi M, Ghanbari Mardasi F. Identification of a Novel WFS1 Mutation Using the Whole Exome Sequencing in an Iranian Pedigree with Autosomal Dominant Hearing Loss. Iran J Otorhinolaryngol. 2021;33(3). doi:10.22038/ijorl.2021.48471.2602
44. Liang P, Chen F, Wang S, et al. Whole exome sequencing of six Chinese families with hereditary non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol. 2021;148. doi:10.1016/j.ijporl.2021.110817
45. Lewis MA, Nolan LS, Cadge BA, et al. Whole exome sequencing in adult-onset hearing loss reveals a high load of predicted pathogenic variants in known deafness-associated genes and identifies new candidate genes. BMC Med Genomics. 2018;11(1):77. doi:10.1186/s12920-018-0395-1
46. Fareed M, Sharma V, Singh I, Rehman SU, Singh G, Afzal M. Whole-Exome Sequencing Reveals a Rare Variant of OTOF Gene Causing Congenital Non-syndromic Hearing Loss Among Large Muslim Families Favoring Consanguinity. Front Genet. 2021;12. doi:10.3389/fgene.2021.641925
47. Rehman AU, Morell RJ, Belyantseva IA, et al. Targeted Capture and Next-Generation Sequencing Identifies C9orf75, Encoding Taperin, as the Mutated Gene in Nonsyndromic Deafness DFNB79. Am J Hum Genet. 2010;86(3):378-388. doi:10.1016/j.ajhg.2010.01.030
48. Wonkam A, Adadey SM, Schrauwen I, et al. Exome sequencing of families from Ghana reveals known and candidate hearing impairment genes. Commun Biol. 2022;5(1). doi:10.1038/s42003-022-03326-8
49. Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507-522. doi:10.1038/nrg.2016.86
50. Daly AK. Pharmacogenetics: A general review on progress to date. Br Med Bull. 2017;124(1):65-79. doi:10.1093/bmb/ldx035
51. Roses AD. Pharmacogenetics and the Practice of Medicine.; 2000. www.nature.com
52. Lanvers-Kaminsky C, Ciarimboli G. Pharmacogenetics of drug-induced ototoxicity caused by aminoglycosides and cisplatin. Pharmacogenomics. 2017;18(18):1683-1695. doi:10.2217/pgs-2017-0125
53. Selimoglu E. Aminoglycoside-Induced Ototoxicity Related Papers Aminoglycoside-Induced Ototoxicity. Vol 13.; 2007:119-126.
54. Ariano RE, Zelenitsky SA, Kassum DA. Aminoglycoside-induced vestibular injury: Maintaining a sense of balance. Ann Pharmacother. 2008;42(9):1282-1289. doi:10.1345/aph.1L001
55. Huth ME, Han KH, Sotoudeh K, et al. Designer aminoglycosides prevent cochlear hair cell loss and hearing loss. J Clin Invest. 2015;125(2):583-592. doi:10.1172/JCI77424
56. McKeage MJ. Comparative adverse effect profiles of platinum drugs. Drug Saf. 1995;13(4):228-244. doi:10.2165/00002018-199513040-00003
57. Wu P, Wu X, Zhang C, Chen X, Huang Y, Li H. Hair Cell Protection from Ototoxic Drugs. Neural Plast. 2021;2021. doi:10.1155/2021/4909237
58. Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity. Pharmacogenomics. 2005;6(1):27-36. doi:10.1517/14622416.6.1.27
59. Göpel W, Berkowski S, Preuss M, et al. Mitochondrial Mutation m.1555A>G as a Risk Factor for Failed Newborn Hearing Screening in a Large Cohort of Preterm Infants.; 2014. http://www.biomedcentral.com/1471-2431/14/210
60. Lanvers-Kaminsky C, Zehnhoff-Dinnesen A am, Parfitt R, Ciarimboli G. Drug-induced ototoxicity: Mechanisms, Pharmacogenetics, and protective strategies. Clin Pharmacol Ther. 2017;101(4):491-500. doi:10.1002/cpt.603
61. Prezant TR, Agapian JV, Bohlman MC, et al. Mitochondrial Ribosomal RNA Mutation Associated with Both Antibiotic-Induced and Non-Syndromic Deafness.; 1993. http://www.nature.com/naturegenetics
62. Usami SI, Abe S, Akita J, et al. Prevalence of Mitochondrial Gene Mutations among Hearing Impaired Patients. Vol 37.; 2000:38-40. www.uia.ac.be/dnalab/hhh/
63. Estivill X, Govea N, Barceló A, et al. Familial Progressive Sensorineural Deafness Is Mainly Due to the MtDNA A1555G Mutation and Is Enhanced by Treatment with Aminoglycosides. Vol 62.; 1998:27-35.
64. Matsunaga T, Kumanomido H, Shiroma M, Ohtsuka A, Asamura K, Usami SI. Deafness Due to A1555G Mitochondrial Mutation Without Use of Aminoglycoside. Vol 114.; 2004:1085-1091.
65. Usami SI, Abe S, Kasai M, et al. Genetic and Clinical Features of Sensorineural Hearing Loss Associated With the 1555 Mitochondrial Mutation.; 1997.
66. Usami SI, Abe S, Shinkawa H, Kimberling WJ. Sensorineural hearing loss caused by mitochondrial dna mutations. J Commun Disord. 1998;31(5):423-435. doi:10.1016/S0021-9924(98)00014-8
67. Casano RAMS, Johnson DF, Bykhovskaya Y, Torricelli F, Bigozzi M, Fischel-Ghodsian N. Inherited Susceptibility to Aminoglycoside Ototoxicity: Genetic Heterogeneity and Clinical Implications.; 1999.
68. Dai P, Yuan Y, Huang D, et al. Extremely low penetrance of deafness associated with the mitochondrial 12S rRNA T1095C mutation in three Chinese families. Biochem Biophys Res Commun. 2006;348(1):200-205. doi:10.1016/j.bbrc.2006.07.031
69. Guan MX. Mitochondrial 12S rRNA mutations associated with aminoglycoside ototoxicity. Mitochondrion. 2011;11(2):237-245. doi:10.1016/j.mito.2010.10.006
70. Li R, Greinwald JH, Yang L, Choo DI, Wenstrup RJ, Guan MX. Molecular analysis of the mitochondrial 12S rRNA and tRNA Ser(UCN) genes in paediatric subjects with non-syndromic hearing loss. J Med Genet. 2004;41(8):615-620. doi:10.1136/jmg.2004.020230
71. Xing G, Chen Z, Wei Q, et al. Mitochondrial 12S rRNA A827G mutation is involved in the genetic susceptibility to aminoglycoside ototoxicity. Biochem Biophys Res Commun. 2006;346(4):1131-1135. doi:10.1016/j.bbrc.2006.05.208
72. Yoshida M, Shintani T, Hirao M, Himi T, Yamaguchi A, Kikuchi K. Aminoglycoside-Induced Hearing Loss in a Patient with the 961 Mutation in Mitochondrial DNA. ORL. 2022;(64):219-222.
73. Zhao H, Li R, Wang Q, et al. Maternally Inherited Aminoglycoside-Induced and Nonsyndromic Deafness Is Associated with the Novel C1494T Mutation in the Mitochondrial 12S RRNA Gene in a Large Chinese Family. Vol 74.; 2004:139-152.
74. Breglio AM, Rusheen AE, Shide ED, et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun. 2017;8(1). doi:10.1038/s41467-017-01837-1
75. Ramkumar V, Mukherjea D, Dhukhwa A, Rybak LP. Oxidative Stress and Inflammation Caused by Cisplatin Ototoxicity. Antioxid Basel Switz. 2021;10(12):1919. doi:10.3390/antiox10121919
76. Riedemann L, Lanvers C, Deuster D, Peters U, Boos J, Zehnhoff-Dinnesen A. Megalin genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Pharmacogenomics J. Published online 2008.
77. Ross CJD, Katzov-Eckert H, Dubé MP, et al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet. 2009;41(12):1345-1349. doi:10.1038/ng.478
78. Oldenburg J, Kraggerud SM, Cvancarova M, Lothe RA, Fossa SD. Cisplatin-induced long-term hearing impairment is associated with specific glutathione s-transferase genotypes in testicular cancer survivors. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(6):708-714. doi:10.1200/JCO.2006.08.9599
79. Peters U, Preisler-Adams S, Hebeisen A, et al. Glutathione S-Transferase Genetic Polymorphisms and Individual Sensitivity to the Ototoxic Effect of Cisplatin.
80. Hagleitner MM, Coenen MJH, Patino-Garcia A, et al. Influence of genetic variants in TPMT and COMT associated with cisplatin induced hearing loss in patients with cancer: Two new cohorts and a meta-analysis reveal significant heterogeneity between cohorts. PLoS ONE. 2014;9(12). doi:10.1371/journal.pone.0115869
81. Pussegoda K, Ross CJ, Visscher H, et al. Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children. Clin Pharmacol Ther. 2013;94(2):243-251. doi:10.1038/clpt.2013.80
82. Yang JJ, Lim JYS, Huang J, et al. The role of inherited TPMT and COMT genetic variation in cisplatin-induced ototoxicity in children with cancer. Clin Pharmacol Ther. 2013;94(2):252-259. doi:10.1038/clpt.2013.121
83. Mukherjea D, Rybak LP. Pharmacogenomics of cisplatin-induced ototoxicity. Pharmacogenomics. 2011;12(7):1039-1050. doi:10.2217/pgs.11.48
84. Fu X, Wan P, Li P, et al. Mechanism and Prevention of Ototoxicity Induced by Aminoglycosides. Front Cell Neurosci. 2021;15. doi:10.3389/fncel.2021.692762
85. O’Sullivan ME, Perez A, Lin R, Sajjadi A, Ricci AJ, Cheng AG. Towards the prevention of aminoglycoside-related hearing loss. Front Cell Neurosci. 2017;11. doi:10.3389/fncel.2017.00325
86. Yu D, Gu J, Chen Y, Kang W, Wang X, Wu H. Current Strategies to Combat Cisplatin-Induced Ototoxicity. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.00999
87. Eshraghi AA, Nazarian R, Telischi FF, Rajguru SM, Truy E, Gupta C. The Cochlear Implant: Historical Aspects and Future Prospects. Anat Rec Adv Integr Anat Evol Biol. 2012;295(11):1967-1980. doi:10.1002/ar.22580
88. Li C, Mittal R, Bergman J, Mittal J, Eshraghi A. Recent advancements toward gapless neural-electrode interface post-cochlear implantation. Neural Regen Res. 2021;16(9):1805. doi:10.4103/1673-5374.306085
89. Tarabichi O, Jensen M, Hansen MR. Advances in hearing preservation in cochlear implant surgery. Curr Opin Otolaryngol Head Neck Surg. 2021;29(5):385-390. doi:10.1097/MOO.0000000000000742
90. Blamey P, Artieres F, Başkent D, et al. Factors Affecting Auditory Performance of Postlinguistically Deaf Adults Using Cochlear Implants: An Update with 2251 Patients. Audiol Neurotol. 2013;18(1):36-47. doi:10.1159/000343189
91. Geers AE. Factors Affecting the Development of Speech, Language, and Literacy in Children With Early Cochlear Implantation. Lang Speech Hear Serv Sch. 2002;33(3):172-183. doi:10.1044/0161-1461(2002/015)
92. Usami S ichi, Nishio S ya, Moteki H, Miyagawa M, Yoshimura H. Cochlear Implantation From the Perspective of Genetic Background. Anat Rec. 2020;303(3):563-593. doi:10.1002/ar.24360
93. Wu CM, Ko HC, Tsou YT, et al. Long-Term Cochlear Implant Outcomes in Children with GJB2 and SLC26A4 Mutations. PLOS ONE. 2015;10(9):e0138575. doi:10.1371/journal.pone.0138575
94. Abdurehim Y, Lehmann A, Zeitouni AG. Predictive Value of GJB2 Mutation Status for Hearing Outcomes of Pediatric Cochlear Implantation. Otolaryngol Neck Surg. 2017;157(1):16-24. doi:10.1177/0194599817697054
95. Daneshi A, Hassanzadeh S, Emamdjomeh H, et al. Prevalence of GJB2 -associated deafness and outcomes of cochlear implantation in Iran. J Laryngol Otol. 2011;125(5):455-459. doi:10.1017/S0022215110002999
96. Davcheva Chakar M, Sukarova Stefanovska E, Ivanovska V, Lazarevska V, Filipche I, Zafirovska B. Speech Perception Outcomes after Cochlear Implantation in Children with GJB2/DFNB1 associated Deafness. Balk Med J. 2014;33(1):60-63. doi:10.5152/balkanmedj.2014.9535
97. Karamert R, Bayazit YA, Altinyay S, et al. Association of GJB2 gene mutation with cochlear implant performance in genetic non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol. 2011;75(12):1572-1575. doi:10.1016/j.ijporl.2011.09.010
98. Kim SH, Nepali R, Yoo MH, Lee KS, Chung JW. Long Term Speech Perception Outcomes of Cochlear Implantation in Gap Junction Protein Beta 2 Related Hearing Loss. J Audiol Otol. 2017;21(2):95-102. doi:10.7874/jao.2017.21.2.95
99. Nishio S ya, Usami S ichi. Outcomes of cochlear implantation for the patients with specific genetic etiologies: a systematic literature review. Acta Otolaryngol (Stockh). 2017;137(7):730-742. doi:10.1080/00016489.2016.1276303
100. Rayess HM, Weng C, Murray GS, Megerian CA, Semaan MT. Predictive factors and outcomes of cochlear implantation in patients with connexin 26 mutation: A comparative study. Am J Otolaryngol. 2015;36(1):7-12. doi:10.1016/j.amjoto.2014.08.010
101. Eppsteiner RW, Shearer AE, Hildebrand MS, et al. Prediction of cochlear implant performance by genetic mutation: The spiral ganglion hypothesis. Hear Res. 2012;292(1-2):51-58. doi:10.1016/j.heares.2012.08.007
102. Nagy I. A novel COCH mutation, V104del, impairs folding of the LCCL domain of cochlin and causes progressive hearing loss. J Med Genet. 2004;41(1):9e-99. doi:10.1136/jmg.2003.012286
103. Shearer AE, Eppsteiner RW, Frees K, et al. Genetic variants in the peripheral auditory system significantly affect adult cochlear implant performance. Hear Res. 2017;348:138-142. doi:10.1016/j.heares.2017.02.008
104. Omichi R, Shibata SB, Morton CC, Smith RJH. Gene therapy for hearing loss. Hum Mol Genet. 2019;28(R1):R65-R79. doi:10.1093/hmg/ddz129
105. Verdera HC, Kuranda K, Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther. 2020;28(3):723-746. doi:10.1016/j.ymthe.2019.12.010
106. Zaiss A, Muruve D. Immune Responses to Adeno-Associated Virus Vectors. Curr Gene Ther. 2005;5(3):323-331. doi:10.2174/1566523054065039
107. Akil O, Seal RP, Burke K, et al. Restoration of Hearing in the VGLUT3 Knockout Mouse Using Virally Mediated Gene Therapy. Neuron. 2012;75(2):283-293. doi:10.1016/j.neuron.2012.05.019
108. Zhao X, Liu H, Liu H, Cai R, Wu H. Gene Therapy Restores Auditory Functions in an Adult Vglut3 Knockout Mouse Model. Hum Gene Ther. 2022;33(13-14):729-739. doi:10.1089/hum.2022.062
109. Akil O, Dyka F, Calvet C, et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci. 2019;116(10):4496-4501. doi:10.1073/pnas.1817537116
110. Al‐Moyed H, Cepeda AP, Jung S, Moser T, Kügler S, Reisinger E. A dual‐AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock‐out mice. EMBO Mol Med. 2019;11(1). doi:10.15252/emmm.201809396
111. Rankovic V, Vogl C, Dörje NM, et al. Overloaded Adeno-Associated Virus as a Novel Gene Therapeutic Tool for Otoferlin-Related Deafness. Front Mol Neurosci. 2021;13. doi:10.3389/fnmol.2020.600051
112. Askew C, Rochat C, Pan B, et al. Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med. 2015;7(295). doi:10.1126/scitranslmed.aab1996
113. Isgrig K, McDougald DS, Zhu J, Wang HJ, Bennett J, Chien WW. AAV2.7m8 is a powerful viral vector for inner ear gene therapy. Nat Commun. 2019;10(1):427. doi:10.1038/s41467-018-08243-1
114. Nist-Lund CA, Pan B, Patterson A, et al. Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat Commun. 2019;10(1):236. doi:10.1038/s41467-018-08264-w
115. Taiber S, Cohen R, Yizhar‐Barnea O, Sprinzak D, Holt JR, Avraham KB. Neonatal AAV gene therapy rescues hearing in a mouse model of SYNE4 deafness. EMBO Mol Med. 2021;13(2). doi:10.15252/emmm.202013259
116. Wu J, Solanes P, Nist-Lund C, et al. Single and Dual Vector Gene Therapy with AAV9-PHP.B Rescues Hearing in Tmc1 Mutant Mice. Mol Ther. 2021;29(3):973-988. doi:10.1016/j.ymthe.2020.11.016
117. Landegger LD, Pan B, Askew C, et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol. 2017;35(3):280-284. doi:10.1038/nbt.3781
118. Iizuka T, Kamiya K, Gotoh S, et al. Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Genet. 2015;24(13):3651-3661. doi:10.1093/hmg/ddv109
119. Yu Q, Wang Y, Chang Q, et al. Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther. 2014;21(1):71-80. doi:10.1038/gt.2013.59
120. Pan B, Askew C, Galvin A, et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat Biotechnol. 2017;35(3):264-272. doi:10.1038/nbt.3801
121. Chien WW, Isgrig K, Roy S, et al. Gene Therapy Restores Hair Cell Stereocilia Morphology in Inner Ears of Deaf Whirler Mice. Mol Ther J Am Soc Gene Ther. 2016;24(1):17-25. doi:10.1038/mt.2015.150
122. Isgrig K, Shteamer JW, Belyantseva IA, et al. Gene Therapy Restores Balance and Auditory Functions in a Mouse Model of Usher Syndrome. Mol Ther. 2017;25(3):780-791. doi:10.1016/j.ymthe.2017.01.007
123. Geng R, Omar A, Gopal SR, et al. Modeling and Preventing Progressive Hearing Loss in Usher Syndrome III. Sci Rep. 2017;7(1):13480. doi:10.1038/s41598-017-13620-9
124. György B, Meijer EJ, Ivanchenko MV, et al. Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate. Mol Ther - Methods Clin Dev. 2019;13:1-13. doi:10.1016/j.omtm.2018.11.003
125. Ivanchenko MV, Hanlon KS, Hathaway DM, et al. AAV-S: A versatile capsid variant for transduction of mouse and primate inner ear. Mol Ther - Methods Clin Dev. 2021;21:382-398. doi:10.1016/j.omtm.2021.03.019
126. Chang Q, Wang J, Li Q, et al. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange‐Nielsen deafness syndrome. EMBO Mol Med. 2015;7(8):1077-1086. doi:10.15252/emmm.201404929
127. Wu X, Zhang L, Li Y, et al. Gene therapy via canalostomy approach preserves auditory and vestibular functions in a mouse model of Jervell and Lange-Nielsen syndrome type 2. Nat Commun. 2021;12(1):697. doi:10.1038/s41467-020-20808-7
128. Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids. 2015;4:e252. doi:10.1038/mtna.2015.23
129. Maeda Y, Fukushima K, Nishizaki K, Smith RJH. In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum Mol Genet. 2005;14(12):1641-1650. doi:10.1093/hmg/ddi172
130. Shibata SB, Ranum PT, Moteki H, et al. RNA Interference Prevents Autosomal-Dominant Hearing Loss. Am J Hum Genet. 2016;98(6):1101-1113. doi:10.1016/j.ajhg.2016.03.028
131. Mukherjea D, Jajoo S, Kaur T, Sheehan KE, Ramkumar V, Rybak LP. Transtympanic Administration of Short Interfering (si)RNA for the NOX3 Isoform of NADPH Oxidase Protects Against Cisplatin-Induced Hearing Loss in the Rat. Antioxid Redox Signal. 2010;13(5):589-598. doi:10.1089/ars.2010.3110
132. Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol. 2012;226(2):365-379. doi:10.1002/path.2993
133. Lentz JJ, Jodelka FM, Hinrich AJ, et al. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med. 2013;19(3):345-350. doi:10.1038/nm.3106
134. Lentz JJ, Pan B, Ponnath A, et al. Direct Delivery of Antisense Oligonucleotides to the Middle and Inner Ear Improves Hearing and Balance in Usher Mice. Mol Ther. 2020;28(12):2662-2676. doi:10.1016/j.ymthe.2020.08.002
135. Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res. Published online May 2022:108523. doi:10.1016/j.heares.2022.108523
136. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281-2308. doi:10.1038/nprot.2013.143
137. Gao X, Tao Y, Lamas V, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. 2018;553(7687):217-221. doi:10.1038/nature25164
138. György B, Nist-Lund C, Pan B, et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med. 2019;25(7):1123-1130. doi:10.1038/s41591-019-0500-9
139. Gu X, Wang D, Xu Z, et al. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol. 2021;22(1):86. doi:10.1186/s13059-021-02311-4
140. Fukui H, Raphael Y. Gene therapy for the inner ear. Hear Res. 2013;297:99-105. doi:10.1016/j.heares.2012.11.017
141. Nadol JB. Comparative anatomy of the cochlea and auditory nerve in mammals. Hear Res. 1988;34(3):253-266. doi:10.1016/0378-5955(88)90006-8
142. Yang SM, Chen W, Guo WW, et al. Regeneration of Stereocilia of Hair Cells by Forced Atoh1 Expression in the Adult Mammalian Cochlea. PLoS ONE. 2012;7(9):e46355. doi:10.1371/journal.pone.0046355
143. Santaolalla F, Salvador C, Martínez A, Sánchez JM, Sánchez del Rey A. Inner ear hair cell regeneration: A look from the past to the future. Neural Regen Res. 2013;8(24):2284-2289. doi:10.3969/j.issn.1673-5374. 2013.24.008
144. Stone JS, Cotanche DA. Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol. 2007;51(6-7):633-647. doi:10.1387/ijdb.072408js
145. Edge AS, Chen ZY. Hair cell regeneration. Curr Opin Neurobiol. 2008;18(4):377-382. doi:10.1016/j.conb.2008.10.001
146. Corwin JT, Cotanche DA. Regeneration of Sensory Hair Cells After Acoustic Trauma. Science. 1988;240(4860):1772-1774. doi:10.1126/science.3381100
147. Mizutari K, Fujioka M, Hosoya M, et al. Notch Inhibition Induces Cochlear Hair Cell Regeneration and Recovery of Hearing after Acoustic Trauma. Neuron. 2013;77(1):58-69. doi:10.1016/j.neuron.2012.10.032
148. Ryals BM, Rubel EW. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science. 1988;240(4860):1774-1776. doi:10.1126/science.3381101
149. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68. doi:10.1186/s13287-019-1165-5
150. Chin MH, Mason MJ, Xie W, et al. Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures. Cell Stem Cell. 2009;5(1):111-123. doi:10.1016/j.stem.2009.06.008
151. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126(4):663-676. doi:10.1016/j.cell.2006.07.024
152. Nourbakhsh A, Colbert BM, Nisenbaum E, et al. Stem Cells and Gene Therapy in Progressive Hearing Loss: the State of the Art. JARO - J Assoc Res Otolaryngol. 2021;22(2):95-105. doi:10.1007/s10162-020-00781-0
153. Chen J, Hong F, Zhang C, et al. Differentiation and transplantation of human induced pluripotent stem cell-derived otic epithelial progenitors in mouse cochlea. Stem Cell Res Ther. 2018;9(1):230. doi:10.1186/s13287-018-0967-1
154. Lopez-Juarez A, Lahlou H, Ripoll C, et al. Engraftment of Human Stem Cell-Derived Otic Progenitors in the Damaged Cochlea. Mol Ther. 2019;27(6):1101-1113. doi:10.1016/j.ymthe.2019.03.018
155. Chen JR, Tang ZH, Zheng J, et al. Effects of genetic correction on the differentiation of hair cell-like cells from iPSCs with MYO15A mutation. Cell Death Differ. 2016;23(8):1347-1357. doi:10.1038/cdd.2016.16
156. Tang ZH, Chen JR, Zheng J, et al. Genetic Correction of Induced Pluripotent Stem Cells From a Deaf Patient With MYO7A Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells. Stem Cells Transl Med. 2016;5(5):561-571. doi:10.5966/sctm.2015-0252
157. Hou K, Jiang H, Karim MdR, et al. A Critical E-box in Barhl1 3′ Enhancer Is Essential for Auditory Hair Cell Differentiation. Cells. 2019;8(5):458. doi:10.3390/cells8050458
158. Zhong C, Chen Z, Luo X, et al. Corrigendum to “Barhl1 is required for the differentiation of inner ear hair cell-like cells from mouse embryonic stem cells” [Int. J. Biochem. Cell Biol. 96 (2018) 79–89]. Int J Biochem Cell Biol. 2018;97:128-129. doi:10.1016/j.biocel.2018.02.009
159. Hosoya M, Saeki T, Saegusa C, et al. Estimating the concentration of therapeutic range using disease-specific iPS cells: Low-dose rapamycin therapy for Pendred syndrome. Regen Ther. 2019;10:54-63. doi:10.1016/j.reth.2018.11.001