Life Expectancy and COVID-19 in Relation to Systemic Endotheliopathy (Systemic Endotheliopathy after COVID-19 as Life Expectancy Indicator: Development, Risk Factors, Prevention)

Main Article Content

Olena Kolesnikova Anastasiia Radchenko

Abstract

Life expectancy is a key indicator for assessing the population health, as it includes an estimate of lifetime mortality rates from various causes. Since 2019, coronavirus disease 2019 (COVID-19) has become the main cause of increased mortality and decreased life expectancy. This is mainly due to unfavorable outcomes of COVID-19 in the acute period. Currently, more and more data is accumulating regarding the negative impact of an incurred COVID-19 on the aging rates and the development of cardiovascular complications, which persists for a long time after the pathogen is eliminated from the body. It is believed that the development of systemic endotheliopathy can be a key mechanism of such long-term outcomes. Despite the widespread distribution of this infection in the population and the large number of cases of prolonged COVID-19 syndrome, the results on the long-term impact of COVID-19 on the development and course of endotheliopathy are scattered and do not provide a comprehensive understanding of risk factors and possible methods of prevention of such endotheliopathies, that could be used for practical needs. Therefore, our review summarized data on the pathogenetic mechanism of development, course features and risk factors of endotheliopathies in relation to COVID-19. We also presented methods of prevention of systemic endotheliopathy in patients with a history of COVID-19 with an emphasis on the dietary component and included our own research results regarding this matter.

Keywords: Life expectancy, COVID-19, systemic endotheliopathy, prevention methods

Article Details

How to Cite
KOLESNIKOVA, Olena; RADCHENKO, Anastasiia. Life Expectancy and COVID-19 in Relation to Systemic Endotheliopathy (Systemic Endotheliopathy after COVID-19 as Life Expectancy Indicator: Development, Risk Factors, Prevention). Medical Research Archives, [S.l.], v. 10, n. 11, nov. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3311>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v10i11.3311.
Section
Research Articles

References

1. Leonhardt D. Life Expectancy, Falling Covid is a terrible health crisis. It’s not the country’s only health crisis. The New York Times. 2021 July 22.
2. Aburto JM, Schöley J, Kashnitsky I, et al. Quantifying impacts of the COVID-19 pandemic through life-expectancy losses: a population-level study of 29 countries. Int J Epidemiol. 2022;51(1):63-74. doi: 10.3390/ijms23116196.
3. Slater TA, Straw S, Drozd M, Kamalathasan S, Cowley A, Witte KK. Dying ‘due to’or ‘with’COVID-19: a cause of death analysis in hospitalised patients. Clin Med. 2020;20(5):e189-e190. doi: 10.7861/clinmed.2020-0440.
4. Malik RJ. Across regions: Are most COVID-19 deaths above or below life expectancy? Germs. 2021;11(1):59. doi: 10.18683/germs.2021.1241.
5. Mongelli A, Barbi V, Gottardi Zamperla M, et al. Evidence for biological age acceleration and telomere shortening in COVID-19 survivors. Int J Mol Sci. 2021;22(11):6151. doi: 10.3390/ijms22116151.
6. Cao X, Li W, Wang T, et al. Accelerated biological aging in COVID-19 patients. Nat Commun. 2022;13(1):1-7. doi: 10.1038/s41467-022-29801-8.
7. Flaumenhaft R, Enjyoji K, Schmaier AA. Vasculopathy in COVID-19. Blood. 2022;140(3):222-235.
doi: 10.1182/blood.2021012250.
8. Six I, Guillaume N, Jacob V, et al. The Endothelium and COVID-19: An Increasingly Clear Link Brief Title: Endotheliopathy in COVID-19. Int J Mol Sci. 2022;23(11):6196. doi: 10.3390/ijms23116196.
9. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418. doi: 10.1016/S0140-6736(20)30937-5.
10. Krishnamachary B, Cook C, Spikes L, Chalise P, Dhillon NK. The potential role of extracellular vesicles in COVID-19 associated endothelial injury and pro-inflammation. medRxiv. 2020;2020.08.27.20182808. doi: 10.1101/2020.08.27.20182808. Preprint
11. Fogarty H, Townsend L, Morrin H, et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19(10):2546-2553. doi: 10.1111/jth.15490.
12. Roncati L, Ligabue G, Fabbiani L, et al. Type 3 hypersensitivity in COVID-19 vasculitis. Clin Immunol. 2020;217:108487.
doi: 10.1016/j.clim.2020.108487.
13. Martínez-Salazar B, Holwerda M, Stüdle C, et al. COVID-19 and the vasculature: current aspects and long-term consequences. Front Cell Dev Biol. 2022;10. doi: 10.3389/fcell.2022.824851.
14. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575-582. doi: 10.1016/S2352-3026(20)30216-7.
15. Pine AB, Meizlish ML, Goshua G, et al. Circulating markers of angiogenesis and endotheliopathy in COVID-19. Pulm Circ. 2020;10(4):2045894020966547. doi: 10.1177/2045894020966547.
16. Rauti R, Shahoha M, Leichtmann-Bardoogo Y, et al. Effect of SARS-CoV-2 proteins on vascular permeability. Elife. 2021;10:e69314. doi: 10.7554/eLife.69314.
17. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(23):2950-2973. doi: 10.1016/j.jacc.2020.04.031.
18. Yamaoka-Tojo M. Endothelial glycocalyx damage as a systemic inflammatory microvascular endotheliopathy in COVID-19. Biomed J. 2020;43(5):399-413. doi: 10.1016/j.bj.2020.08.007.
19. McConnell MJ, Kondo R, Kawaguchi N, Iwakiri Y. Covid‐19 and Liver Injury: Role of Inflammatory Endotheliopathy, Platelet Dysfunction, and Thrombosis. Hepatol Commun. 2022;6(2):255-269. doi: 10.1002/hep4.1843.
20. Rosell A, Havervall S, Von Meijenfeldt F, et al. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality—brief report. Arterioscler Thromb Vasc Biol. 2021;41(2):878-882. Doi: 10.1161/ATVBAHA.120.315547.
21. Jing H, Zuo N, Novakovic VA, Shi J. The Central Role of Extracellular Vesicles in the Mechanisms of Thrombosis in COVID-19 Patients With Cancer and Therapeutic Strategies. Fron Cell Dev Biol. 2021;9. doi: 10.3389/fcell.2021.792335.
22. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.
23. Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41(32):3038-3044. doi: 10.1093/eurheartj/ehaa623.
24. Fogarty H, Ward SE, Townsend L, et al.; Irish COVID-19 Vasculopathy Study (iCVS) Investigators. Sustained VWF-ADAMTS-13 axis imbalance and endotheliopathy in long COVID syndrome is related to immune dysfunction. J Thromb Haemost. 2022;10.1111/jth.15830. doi: 10.1111/jth.15830.
25. Sollini M, Ciccarelli M, Cecconi M, et al. Vasculitis changes in COVID-19 survivors with persistent symptoms: an [18F] FDG-PET/CT study. Eur J Nucl Med Mol Imaging. 2021;48(5):1460-1466. doi: 10.1007/s00259-020-05084-3.
26. Becker RC. COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis. 2020;50(3):499-511. doi: 10.1007/s11239-020-02230-4.
27. Whitaker M, Elliott J, Chadeau-Hyam M, et al. Persistent COVID-19 symptoms in a community study of 606,434 people in England. Nat Commun. 2022;13(1):1-0. doi: 10.1038/s41467-022-29521-z.
28. Tong M, Yan X, Jiang Y, et al. Endothelial biomarkers in patients recovered from COVID-19 one year after hospital discharge: A cross-sectional study. Mediterr J Hematol Infect Dis. 2022;14(1). doi: 10.4084/MJHID.2022.033.
29. Fernández-de-Las-Peñas C, Martín-Guerrero JD, Pellicer-Valero ÓJ, et al. Female sex is a risk factor associated with long-term post-COVID related-symptoms but not with COVID-19 symptoms: The LONG-COVID-EXP-CM multicenter study. J Clin Med. 2022;11(2):413. doi: 10.3390/jcm11020413.
30. Ratchford SM, Stickford JL, Province VM, et al. Vascular alterations among young adults with SARS-CoV-2. Am J Physiol Heart Circ Physiol. 2021;320(1):H404-H410. doi: 10.1152/ajpheart.00897.2020.
31. Nandadeva D, Young BE, Stephens BY, et al. Blunted peripheral but not cerebral vasodilator function in young otherwise healthy adults with persistent symptoms following COVID-19. Am J Physiol Heart Circ Physiol. 2021;321(3):H479-484. doi: 10.1152/ajpheart.00368.2021.
32. von Meijenfeldt FA, Havervall S, Adelmeijer J, et al. Sustained prothrombotic changes in COVID-19 patients 4 months after hospital discharge. Blood Adv. 2021;5(3):756-759. doi: 10.1182/bloodadvances.2020003968.
33. von Meijenfeldt FA, Havervall S, Adelmeijer J, Thalin C, Lisman T. Persistent endotheliopathy in the pathogenesis of long COVID syndrome: Comment from von Meijenfeldt et al. J Thromb Haemost. 2022;20(1):267-269. doi: 10.1111/jth.15580.
34. Chioh FW, Fong SW, Young BE, et al. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation. Elife. 2021;10:e64909. doi: 10.7554/eLife.64909.
35. Santoro L, Falsetti L, Zaccone V, et al. Impaired Endothelial Function in Convalescent Phase of COVID-19: A 3 Month Follow Up Observational Prospective Study. J Clin Med. 2022;11(7):1774. doi: 10.3390/jcm11071774.
36. Fan BE, Wong SW, Sum CL, et al. Hypercoagulability, endotheliopathy, and inflammation approximating 1 year after recovery: Assessing the long‐term outcomes in COVID‐19 patients. Am J Hematol. 2022;97(7):915-923. doi: 10.1002/ajh.26575.
37. Townsend L, Fogarty H, Dyer A, et al. Prolonged elevation of D‐dimer levels in convalescent COVID‐19 patients is independent of the acute phase response. J Thromb Haemost. 2021;19(4):1064-1070. doi: 10.1111/jth.15267.
38. Mejia-Renteria H, Travieso A, Sagir A, et al. In-vivo evidence of systemic endothelial vascular dysfunction in COVID-19. Int J Cardiol. 2021;345:153-155. doi: 10.1016/j.ijcard.2021.10.140.
39. Trumbo P, Schlicker S, Yates AA, Poos M; Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621-1630. doi: 10.1016/s0002-8223(02)90346-9.
40. Xu S, Ilyas I, Little PJ, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73(3):924-967. doi: 10.1124/pharmrev.120.000096.
41. Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and endothelial function. Biomedicines. 2020;8(8):277. doi: 10.3390/biomedicines8080277.
42. Rees CA, Rostad CA, Mantus G, et al. Altered amino acid profile in patients with SARS-CoV-2 infection. Proc Natl Acad Sci. 2021;118(25):e2101708118. doi: 10.1073/pnas.210170811.
43. Allerton TD, Proctor DN, Stephens JM, Dugas TR, Spielmann G, Irving BA. l-Citrulline supplementation: impact on cardiometabolic health. Nutrients. 2018;10(7):921. doi: 10.3390/nu10070921.
44. Miyazaki H, Matsuoka H, Cooke JP, et al. Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation. 1999;99(9):1141-1146. doi: 10.1161/01.cir.99.9.1141.
45. Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol. 1994;24(2):471-476. doi: 10.1016/0735-1097(94)90305-0.
46. Zanoli L, Gaudio A, Mikhailidis DP, et al. Vascular dysfunction of COVID-19 is partially reverted in the long-term. Circ Res. 2022;130(9):1276-1285. doi: 10.1161/CIRCRESAHA.121.320460.
47. Zhao G, He F, Wu C, et al. Betaine in inflammation: mechanistic aspects and applications. Front Immunol. 2018;9:1070. doi: 10.3389/fimmu.2018.01070.
48. Nobari H, Cholewa JM, Pérez-Gómez J, Castillo-Rodríguez A. Effects of 14-weeks betaine supplementation on pro-inflammatory cytokines and hematology status in professional youth soccer players during a competition season: a double blind, randomized, placebo-controlled trial. J Int Soc Sports Nutr. 2021 Dec;18(1):1-0. doi: 10.1186/s12970-021-00441-5.
49. Malaguarnera G, Catania VE, Bonfiglio C, Bertino G, Vicari E, Malaguarnera M. Carnitine Serum Levels in Frail Older Subjects. Nutrients. 2020;12(12):3887. doi: 10.3390/nu12123887.
50. Rattray NJW, Trivedi DK, Xu Y, et al. Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat Commun. 2019;10(1):5027. doi: 10.1038/s41467-019-12716-2.
51. Meng L, Shi H, Wang DG, et al. Specific Metabolites Involved in Antioxidation and Mitochondrial Function Are Correlated With Frailty in Elderly Men. Front Med (Lausanne). 2022;9:816045. doi: 10.3389/fmed.2022.816045.