Inhibition and eradication of Streptococcus pyogenes biofilm by phytochemical extracts of cranberry and sumac berry

Main Article Content

Soheila Abachi Bruce Rathgeber Song Lee H.P. Vasantha Rupasinghe

Abstract

Background: Diverse infections occur due to specific virulence factors of Streptococcus pyogenes, such as surface proteins and their biofilm formation capacity. This study aimed to assess the anti-biofilm effects of phytochemical-rich fruit extracts of cranberry (Vaccinium macrocarpon) and sumac berry (Rhus typhina).


Methods: Biofilm inhibition and eradication potential of the berries were tested by metabolic activity measurement and viable cell count technique as well as visualization using scanning electron microscopy (SEM).


Results: Minimum biofilm inhibitory concentration and minimum biofilm eradicating concentration of cranberry and sumac berry extracts ranged from 1 to >4 mg mL-1 and 2 to >16 mg mL-1, respectively. The effects of these extracts on the pre-formed biofilms and biofilm formation were imaged. The scanning electron microscopy images were indicative that the extracts could affect the integrity of bacteria hence quenching the biofilm formation capacity of S. pyogenes.


Conclusion: Further investigations on quorum sensing and exopolysaccharide formation can confirm the anti-biofilm potency of extracts.

Keywords: streptococcal pharyngitis, biofilm, Rhus typhina, Vaccinium macrocarpon

Article Details

How to Cite
ABACHI, Soheila et al. Inhibition and eradication of Streptococcus pyogenes biofilm by phytochemical extracts of cranberry and sumac berry. Medical Research Archives, [S.l.], v. 10, n. 11, nov. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3316>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v10i11.3316.
Section
Research Articles

References

1. Abachi, S., Lee, S., & Rupasinghe, H.P.V. (2016). Molecular mechanisms of inhibition of Streptococcus species by phytochemicals. Molecules, 21(2), 215.
2. Abachi, S., Macé, S., Lee, S., & Rupasinghe, H. P.V. (2022). Cranberry and sumac extracts exhibit antibacterial and anti-adhesive effects against Streptococcus pyogenes. Journal of medicinal food.
3. Akiyama, H., Morizane, S., Yamasaki, O., Oono, T., & Iwatsuki, K. (2003). Assessment of Streptococcus pyogenes microcolony formation in infected skin by confocal laser scanning microscopy. Journal of dermatological science, 32(3), 193-199. http://linkinghub.elsevier.com/retrieve/pii/S0923181103000963?showall=true
4. Almeida, L. S. B. D., Murata, R. M., Yatsuda, R., Dos Santos, M. H., Nagem, T. J., Alencar, S. M. D., . . . Rosalen, P. L. (2008). Antimicrobial activity of Rheedia brasiliensis and 7-epiclusianone against Streptococcus mutans. Phytomedicine, 15, 886-891.
5. Austin, J. W., & Bergeron, G. (1995). Development of bacterial biofilms in dairy processing lines. Journal of Dairy Research, 62(03), 509-519.
6. Baldassarri, L., Recchia, S., Creti, R., Imperi, M., Pataracchia, M., & Orefici, G. (2007). P608 Effect of antibiotics at sub-MIC concentration on biofilm formation by Streptococcus pyogenes. Int. J. Antimicrob. Agents, 29, Supplement 2, S142. https://doi.org/http://dx.doi.org/10.1016/S0924-8579(07)70451-X
7. Duarte, S., Gregoire, S., Singh, A. P., Vorsa, N., Schaich, K., Bowen, W. H., & Koo, H. (2006). Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiol Lett, 257(1), 50-56. https://doi.org/10.1111/j.1574-6968.2006.00147.x
8. Frieden, T. (2013). Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention, 11-93.
9. Furiga, A., Lonvaud Funel, A., Dorignac, G., Badet, C. (2008). In vitro anti-bacterial and anti-adherence effects of natural polyphenolic compounds on oral bacteria. J Appl Microbiol, 105(5), 1470-1476.
10. Gregoire, S., Singh, A., Vorsa, N., & Koo, H. (2007). Influence of cranberry phenolics on glucan synthesis by glucosyltransferases and Streptococcus mutans acidogenicity. J Appl Microbiol, 103(5), 1960-1968.
11. He, J., Chen, L., Heber, D., Shi, W., & Lu, Q. Y. (2006). Antibacterial compounds from Glycyrrhiza uralensis. Journal of natural products, 69(1), 121-124.
12. Kang, M. S., Oh, J. S., Kang, I. C., Hong, S. J., & Choi, C. H. (2008). Inhibitory effect of methyl gallate and gallic acid on oral bacteria. The Journal of Microbiology, 46(6), 744-750.
13. Kirby, C. W., Wu, T., Tsao, R., & McCallum, J. L. (2013). Isolation and structural characterization of unusual pyranoanthocyanins and related anthocyanins from Staghorn sumac (Rhus typhina L.) via UPLC–ESI-MS, 1H, 13C, and 2D NMR spectroscopy. Phytochemistry, 94, 284-293.
14. Kuhn, S. M., Preiksaitis, J., Tyrrel, G. J., Jadavji, T., Church, D., & Davies, H. D. (2001). Evaluation of potential factors contributing to microbiological treatment failure in Streptococcus pyogenes pharyngitis. The Canadian Journal of Infectious Diseases, 12(1), 33.
15. LaPlante, K. L., Sarkisian, S. A., Woodmansee, S., Rowley, D. C., & Seeram, N. P. (2012). Effects of cranberry extracts on growth and biofilm production of Escherichia coli and Staphylococcus species. Phytother. Res., 26(9), 1371-1374.
16. Luís, Â., Silva, F., Sousa, S., Duarte, A., Domingues, F. (2014). Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling, 30(1), 69-79.
17. Macé, S., Truelstrup Hansen, L., & Rupasinghe, H.P.V. (2017). Anti-bacterial activity of phenolic compounds against Streptococcus pyogenes. Medicines, 4(2), 25.
18. Mah, T. F. C., & O'Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol, 9(1), 34-39.
19. Manetti, A. G. O., Zingaretti, C., Falugi, F., Capo, S., Bombaci, M., Bagnoli, F., . . . Margarit, I. (2007). Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Molecular Microbiology, 64(4), 968-983. https://doi.org/10.1111/j.1365-2958.2007.05704.x
20. Manner, S., Skogman, M., Goeres, D., Vuorela, P., & Fallarero, A. (2013). Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int. J. Mol. Sci., 14(10), 19434-19451.
21. Monte, J., Abreu, A. C., Borges, A., Simões, L. C., & Simões, M. (2014). Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens, 3(2), 473-498.
22. Neely, M. N., Pfeifer, J. D., & Caparon, M. (2002). Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun, 70(7), 3904-3914.
23. Nobbs, A. H., Lamont, R. J., & Jenkinson, H. F. (2009). Streptococcus adherence and colonization. Microbiology and Molecular Biology Reviews, 73(3), 407-450.
24. Ogawa, T., Terao, Y., Okuni, H., Ninomiya, K., Sakata, H., Ikebe, K., . . . Kawabata, S. (2011). Biofilm formation or internalization into epithelial cells enable Streptococcus pyogenes to evade antibiotic eradication in patients with pharyngitis. Microbial pathogenesis, 51(1), 58-68.
25. Pettit, R. K., Weber, C. A., Kean, M. J., Hoffmann, H., Pettit, G. R., Tan, R., . . . Horton, M. L. (2005). Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob Agents Chemother, 49(7), 2612-2617.
26. Saxena, G., McCutcheon, A., Farmer, S., Towers, G., & Hancock, R. (1994). Antimicrobial constituents of Rhus glabra. Journal of ethnopharmacology, 42(2), 95-99.
27. Sendamangalam, V., Choi, O. K., Kim, D., & Seo, Y. (2011). The anti-biofouling effect of polyphenols against Streptococcus mutans. Biofouling, 27(1), 13-19.
28. Shen, Y., Köller, T., Kreikemeyer, B., & Nelson, D. C. (2013). Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. J. Antimicrob. Chemother., dkt104.
29. Ulrey, R. K., Barksdale, S. M., Zhou, W., & van Hoek, M. L. (2014). Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complementary Altern. Med., 14(1), 499.
30. Wang, S., & Zhu, F. (2017). Chemical composition and biological activity of staghorn sumac (Rhus typhina). Food chemistry, 237, 431-443.
31. Wijesundara, N. M., Lee, S. F., Cheng, Z., Davidson, R., & Rupasinghe, H.P.V. (2021). Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Scientific reports, 11(1), 1-14.
32. Wijesundara, N. M., & Rupasinghe, H.P.V. (2019). Bactericidal and anti-biofilm activity of ethanol extracts derived from selected medicinal plants against Streptococcus pyogenes. Molecules, 24(6), 1165.
33. Wijesundara, N. M., & Rupasinghe, H.P.V. (2018). Essential oils from Origanum vulgare and Salvia officinalis exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes. Microbial pathogenesis, 117, 118-127.
34. Wu, T., McCallum, J. L., Wang, S., Liu, R., Zhu, H., & Tsao, R. (2013). Evaluation of antioxidant activities and chemical characterisation of staghorn sumac fruit (Rhus hirta L.). Food chemistry, 138(2-3), 1333-1340.