ACE2Fc: A Promising Therapy for SARS-Cov2 Infection

Main Article Content

P.K. Smitha R.K. Shandil Pushkarni Suresh Kunal Biswas G.R. Rudramurthy C.N. Naveenkumar K. Bharathkumar Naga Puspha Battula Suprabuddha Datta Chowdhury Sakshi Sinha Sarmistha Dutta Sujan K. Dhar Shridhar Narayanan Manjula Das

Abstract

SARS-CoV2 entry is mediated by binding of viral spike-protein (S) to the transmembrane Angiotensin-Converting Enzyme-2 (ACE2) of the host cell. Thus, to prevent transmission of disease, strategies to abrogate the interaction are important. However, ACE2 cannot be blocked since its normal function is to convert the Angiotensin II peptide to Angiotensin(1-7) to reduce hypertension. This work reports a recombinant cell line secreting soluble ACE2-ectopic domain (MFcS2), modified to increase binding and production efficacy and fused to human immunoglobulin-Fc. While maintaining its enzymatic activity, the molecule trapped and neutralized SARS-CoV2 virus in vitro with an IC50 of 64 nM.  In vivo, with no pathology in the vital organs, it inhibited the viral load in lungs in SARS-CoV2 infected Golden-Syrian-hamster. The Intravenous pharmacokinetic profiling of MFcS2 in hamster at a dose of 5 mg/Kg presented a maximum serum concentration of 23.45 µg/mL  with a half-life of 29.56 hrs. These results suggest that MFcS2 could be used as an effective decoy based therapeutic strategy to treat COVID19. This work also reports usage of a novel oral-cancer cell line as in vitro model of SARS-Cov2 infection, validated by over expressing viral-defence pathways upon RNA-seq analysis and over-expression of ACE2 and TMPRSS2 upon growth in hyperglycaemic condition.

Article Details

How to Cite
SMITHA, P.K. et al. ACE2Fc: A Promising Therapy for SARS-Cov2 Infection. Medical Research Archives, [S.l.], v. 10, n. 12, dec. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3322>. Date accessed: 29 mar. 2024. doi: https://doi.org/10.18103/mra.v10i12.3322.
Section
Research Articles

References

1. Wang J, Xu X, Zhou X, et al. Molecular simulation of SARS-CoV-2 spike protein binding to pangolin ACE2 or human ACE2 natural variants reveals altered susceptibility to infection. J Gen Virol. 2020:jgv001452.
2. Procko E. The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus 2. bioRxiv. 2020. doi:10.1101/2020.03.16.994236
3. Dougan M, Nirula A, Azizad M, et al. Bamlanivimab plus etesevimab in mild or moderate Covid-19. N Engl J Med. 2021;385(15):1382-1392.
4. Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000Research. 2020;9:72. doi:10.12688/f1000research.22211.2
5. Hansen J, Baum A, Pascal KE, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science (80- ). 2020;369(6506):1010-1014.
6. Roback JD, Guarner J. Convalescent plasma to treat COVID-19: possibilities and challenges. Jama. 2020;323(16):1561-1562.
7. Hegde S, Tang Z, Zhao J, Wang J. Inhibition of SARS-CoV-2 by Targeting Conserved Viral RNA Structures and Sequences . Front Chem . 2021;9. https://www.frontiersin.org/article/10.3389/fchem.2021.802766.
8. Pan H, Peto R, Henao-Restrepo A-M, et al. Repurposed Antiviral Drugs for Covid-19-Interim WHO Solidarity Trial Results. Lancet. 2022;399:1941-1953.
9. Hoffmann M, Mösbauer K, Hofmann-Winkler H, et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 2020;585(7826):588-590.
10. Maisonnasse P, Guedj J, Contreras V, et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature. 2020;585(7826):584-587.
11. Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent Sci. 2020;6(5):672-683. doi:10.1021/acscentsci.0c00489
12. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med. 2022;386(6):509-520.
13. Cully M. A tale of two antiviral targets - and the COVID-19 drugs that bind them. Nat Rev Drug Discov. 2022;21(1):3-5. doi:10.1038/D41573-021-00202-8
14. Rubin R. Baricitinib Is First Approved COVID-19 Immunomodulatory Treatment. JAMA. 2022;327(23):2281.
15. Zhang Z, Zeng E, Zhang L, et al. Potent prophylactic and therapeutic efficacy of recombinant human ACE2-Fc against SARS-CoV-2 infection in vivo. Cell Discov. 2021;7(1). doi:10.1038/s41421-021-00302-0
16. Liu P, Xie X, Gao L, Jin J. Designed variants of ACE2-Fc that decouple anti-SARS-CoV-2 activities from unwanted cardiovascular effects. Int J Biol Macromol. 2020;165:1626-1633.
17. Higuchi Y, Suzuki T, Arimori T, et al. Engineered ACE2 receptor therapy overcomes mutational escape of SARS-CoV-2. Nat Commun. 2021;12(1):3802. doi:10.1038/s41467-021-24013-y
18. Siriwattananon K, Manopwisedjaroen S, Kanjanasirirat P, et al. Development of Plant-Produced Recombinant ACE2-Fc Fusion Protein as a Potential Therapeutic Agent Against SARS-CoV-2. Front Plant Sci. 2021;11(January):1-12. doi:10.3389/fpls.2020.604663
19. Ferrari M, Mekkaoui L, Ilca FT, et al. Characterization of a novel ACE2-based therapeutic with enhanced rather than reduced activity against SARS-CoV-2 variants. J Virol. 2021;95(19):e00685-21.
20. Castilho A, Schwestka J, Kienzl NF, et al. Generation of enzymatically competent SARS-CoV-2 decoy receptor ACE2-Fc in glycoengineered Nicotiana benthamiana. Biotechnol J. 2021;16(6):1-6. doi:10.1002/biot.202000566
21. Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273.
22. Samavati L, Uhal BD. ACE2, Much More Than Just a Receptor for SARS-COV-2 . Front Cell Infect Microbiol . 2020;10:317. https://www.frontiersin.org/article/10.3389/fcimb.2020.00317.
23. Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221-224. doi:10.1038/s41586-020-2179-y
24. Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905-913.
25. Zoufaly A, Poglitsch M, Aberle JH, et al. Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir Med. 2020;8(11):1154-1158. doi:10.1016/S2213-2600(20)30418-5
26. Liu P, Wysocki J, Souma T, et al. Novel ACE2-Fc chimeric fusion provides long-lasting hypertension control and organ protection in mouse models of systemic renin angiotensin system activation. Kidney Int. 2018;94(1):114-125.
27. Glasgow A, Glasgow J, Limonta D, et al. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc Natl Acad Sci. 2020;117(45):28046-28055.
28. Linsky TW, Vergara R, Codina N, et al. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science (80- ). 2020;370(6521):1208-1214.
29. Chan KK, Dorosky D, Sharma P, et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science (80- ). 2020;369(6508):1261-1265. doi:10.1126/SCIENCE.ABC0870
30. Miller A, Leach A, Thomas J, et al. A super-potent tetramerized ACE2 protein displays enhanced neutralization of SARS-CoV-2 virus infection. Sci Rep. 2021;11(1):1-13.
31. Cameroni E, Bowen JE, Rosen LE, et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. 2022;602(7898):664-670.
32. Ikemura N, Taminishi S, Inaba T, et al. An engineered ACE2 decoy neutralizes the SARS-CoV-2 Omicron variant and confers protection against infection in vivo. Sci Transl Med. 2022;14(650). doi:10.1126/SCITRANSLMED.ABN7737
33. Dwivedi N, Gangadharan C, Pillai V, Kuriakose MA, Suresh A, Das M. Establishment and characterization of novel autologous pair cell lines from two Indian non‑habitual tongue carcinoma patients. Oncol Rep. 2022;48(3):1-12. doi:10.3892/OR.2022.8362/HTML
34. Andrade MA, Chacon P, Merelo JJ, Morán F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng Des Sel. 1993;6(4):383-390.
35. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884-i890.
36. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.
37. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1-21.
38. Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. 2021;2(3):100141.
39. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99(3):306-314.
40. Cieza RJ, Golob JL, Colacino JA, Wobus CE. Comparative analysis of public RNA-sequencing data from human intestinal enteroid (HIEs) infected with enteric RNA viruses identifies universal and virus-specific epithelial responses. Viruses. 2021;13(6):1059.
41. Liao Y-H, Zheng J-Q, Zheng C-M, Lu K-C, Chao Y-C. Novel molecular evidence related to COVID-19 in patients with diabetes mellitus. J Clin Med. 2020;9(12):3962.
42. Herman-Edelstein M, Guetta T, Barnea A, et al. Expression of the SARS-CoV-2 receptorACE2 in human heart is associated with uncontrolled diabetes, obesity, and activation of the renin angiotensin system. Cardiovasc Diabetol. 2021;20(1):1-14.
43. D’Onofrio N, Scisciola L, Sardu C, et al. Glycated ACE2 receptor in diabetes: open door for SARS-COV-2 entry in cardiomyocyte. Cardiovasc Diabetol. 2021;20(1):1-16.
44. Okui T, Matsuda Y, Karino M, Hideshima K, Kanno T. Oral Mucosa Could Be an Infectious Target of SARS-CoV-2. Healthc (Basel, Switzerland). 2021;9(8). doi:10.3390/HEALTHCARE9081068
45. Rendon-Marin S, Martinez-Gutierrez M, Whittaker GR, Jaimes JA, Ruiz-Saenz J. SARS CoV-2 Spike Protein in silico Interaction With ACE2 Receptors From Wild and Domestic Species . Front Genet . 2021;12. https://www.frontiersin.org/article/10.3389/fgene.2021.571707.
46. Isaac-Lam MF. Molecular modeling of the interaction of ligands with ACE2–SARS-CoV-2 spike protein complex. silico Pharmacol. 2021;9(1):1-16.
47. Basu A, Sarkar A, Maulik U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci Rep. 2020;10(1):1-15.
48. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science (80- ). 2005;309(5742):1864-1868.
49. Fountain JH, Lappin SL. Physiology, Renin Angiotensin System. StatPearls. June 2022. https://www.ncbi.nlm.nih.gov/books/NBK470410/. Accessed December 7, 2022.
50. Lévy BI. Can angiotensin II type 2 receptors have deleterious effects in cardiovascular disease? Implications for therapeutic blockade of the renin–angiotensin system. Circulation. 2004;109(1):8-13.
51. Namsolleck P, Moll GN. Does activation of the protective Renin-Angiotensin System have therapeutic potential in COVID-19? Mol Med. 2020;26(1):1-5.
52. Chung MK, Karnik S, Saef J, et al. SARS-CoV-2 and ACE2: The biology and clinical data settling the ARB and ACEI controversy. EBioMedicine. 2020;58:102907.
53. Sarzani R, Giulietti F, Di Pentima C, Giordano P, Spannella F. Disequilibrium between the classic renin-angiotensin system and its opposing arm in SARS-CoV-2-related lung injury. Am J Physiol Cell Mol Physiol. 2020;319(2):L325-L336.
54. Lopes RD, Macedo AVS, Moll-Bernardes RJ, et al. Continuing versus suspending angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: Impact on adverse outcomes in hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)--The BRACE CORONA Trial. Am Heart J. 2020;226:49-59.
55. Treskova-Schwarzbach M, Haas L, Reda S, et al. Pre-existing health conditions and severe COVID-19 outcomes: an umbrella review approach and meta-analysis of global evidence. BMC Med. 2021;19(1). doi:10.1186/S12916-021-02058-6
56. Sanyaolu A, Okorie C, Marinkovic A, et al. Comorbidity and its Impact on Patients with COVID-19. SN Compr Clin Med. June 2020:1-8. doi:10.1007/s42399-020-00363-4
57. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol. 2020;11. doi:10.3389/FIMMU.2020.01708
58. Ramasamy S, Subbian S. Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clin Microbiol Rev. 2021;34(3):e00299-20.
59. Govender N, Khaliq OP, Moodley J, Naicker T. Insulin resistance in COVID-19 and diabetes. Prim Care Diabetes. 2021;15(4):629-634. doi:10.1016/j.pcd.2021.04.004
60. Iwanaga N, Cooper L, Rong L, et al. Novel ACE2-IgG1 fusions with improved in vitro and in vivo activity against SARS-CoV2. bioRxiv Prepr Serv Biol. July 2020. doi:10.1101/2020.06.15.152157
61. Lei C, Qian K, Li T, et al. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat Commun. 2020;11(1):1-5. doi:10.1038/s41467-020-16048-4
62. Duivelshof BL, Murisier A, Camperi J, et al. Therapeutic Fc‐fusion proteins: Current analytical strategies. J Sep Sci. 2021;44(1):35-62.
63. Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409-424. doi:10.1038/s41579-021-00573-0
64. SeyedAlinaghi S, Mirzapour P, Dadras O, et al. Characterization of SARS-CoV-2 different variants and related morbidity and mortality: a systematic review. Eur J Med Res. 2021;26(1):51. doi:10.1186/s40001-021-00524-8
65. Han P, Su C, Zhang Y, et al. Molecular insights into receptor binding of recent emerging SARS-CoV-2 variants. Nat Commun. 2021;12(1):6103. doi:10.1038/s41467-021-26401-w
66. Lupala CS, Ye Y, Chen H, Su X-D, Liu H. Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor. Biochem Biophys Res Commun. 2022;590:34-41.
67. Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19) - StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK570580/. Accessed December 7, 2022.
68. Barton MI, MacGowan SA, Kutuzov MA, Dushek O, Barton GJ, van der Merwe PA. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. Elife. 2021;10:e70658.
69. Ramanathan M, Ferguson ID, Miao W, Khavari PA. SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. Lancet Infect Dis. 2021;21(8):1070. doi:10.1016/S1473-3099(21)00262-0
70. Goher SS, Ali F, Amin M. The Delta variant mutations in the receptor binding domain of SARS-CoV-2 show enhanced electrostatic interactions with the ACE2. Med drug Discov. 2022;13:100114.
71. Hadi-Alijanvand H, Rouhani M. Studying the Effects of ACE2 Mutations on the Stability, Dynamics, and Dissociation Process of SARS-CoV-2 S1/hACE2 Complexes. J Proteome Res. 2020;19(11):4609-4623. doi:10.1021/acs.jproteome.0c00348
72. Ye F, Lin X, Chen Z, et al. S19W, T27W, and N330Y mutations in ACE2 enhance SARS-CoV-2 S-RBD binding toward both wild-type and antibody-resistant viruses and its molecular basis. Signal Transduct Target Ther. 2021;6(1):1-12.
73. Chan KK, Tan TJC, Narayanan KK, Procko E. An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants. Sci Adv. 2021;7(8):eabf1738.
74. Salamanna F, Maglio M, Landini MP, Fini M. Body localization of ACE-2: On the trail of the keyhole of SARS-CoV-2. Front Med. 2020;7:935.
75. Garreta E, Prado P, Stanifer ML, et al. A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Cell Metab. 2022;34(6):857-873.e9. doi:10.1016/J.CMET.2022.04.009
76. Imai M, Iwatsuki-Horimoto K, Hatta M, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci. 2020;117(28):16587-16595.
77. Gruber AD, Firsching TC, Trimpert J, Dietert K. Hamster models of COVID-19 pneumonia reviewed: How human can they be? Vet Pathol. 2022;59(4):528-545.
78. Higuchi Y, Suzuki T, Arimori T, et al. High affinity modified ACE2 receptors protect from SARS-CoV-2 infection in hamsters. September 2020. doi:10.1101/2020.09.16.299891
79. Alfaleh MA, Zawawi A, Al-Amri SS, Hashem AM. David versus goliath: ACE2-Fc receptor traps as potential SARS-CoV-2 inhibitors. MAbs. 2022;14(1). doi:10.1080/19420862.2022.2057832