Yttrium-90 Hepatic Therapy and the Increasing Role of Volumetric Voxel-based Post Therapy Dosimetry: A Case Report

Main Article Content

Linda Ding, PhD Shirin Sioshansi, MD Hesham Malik, MD Elisa Franquet-Elia, MD Lacey McIntosh, DO, MPH Evan Ruppell, DO Robert Licho, MD Young Kim, MD Alan Goldstein, MD Kriti Mittal, MD Ming-Jin Wang, MD Patan Gultawatvichai, MD Savant Mehta, MD Kimberly Foley, NP Sean Wilson, MD Maryann L Bishop-Jodoin, MEd Thomas J FitzGerald, MD

Abstract

Yttrium-90 (Y-90) therapy has become an important component to the care of patients with primary hepatic malignancies and lesions that have metastasized to the liver. Therapy is administered through an intra-arterial procedure after an interventional procedure is performed using an albumin labeled product to ensure therapy will be delivered to the target volume of interest with minimal migration from the target of choice. In the past, dose to target has been measured by activity delivered and qualitative deposition of dose on metabolic imaging post application. Imaging tools such as single positron emission computer tomography (SPECT) and digital positron emission tomography have given us insight into quantitative dose to volumetric tumor target and dose to normal tissue. Recent validation of computational software has provided voxel-based dosimetry similar to applied processes established in radiation oncology planning systems. This development presents an opportunity to create dose volume analysis similar to teletherapy and brachytherapy dose delivery for Y-90 therapy. In this case report, we review Y-90 dosimetry on a patient with dual diagnosis of a locally advanced high-risk adenocarcinoma of the prostate which required treatment to the para-aortic lymph nodes located in the same axial plane with renal parenchyma. Although not clinically anticipated, hepatocellular carcinoma was serendipitously discovered at the time of staging for prostate cancer. Treatment dosimetry of the hepatocellular carcinoma is reviewed in retrospect with voxel-based commercial software. Same day SPECT study suggested dose localized to the liver, however voxel planning software confirmed unintentional dose to additional structures including the right kidney and uninvolved liver which influenced radiation therapy treatment planning for prostate carcinoma. With modern available tools, post therapy dosimetry for Y-90 can be performed in a manner similar to volumetric dosimetry used in radiation oncology and provide valuable dose volume analysis of dose delivered to target and additional tissue.

Keywords: Hepatocellular carcinoma, Radiation therapy, Y-90, Radiology, Theranostics

Article Details

How to Cite
DING, Linda et al. Yttrium-90 Hepatic Therapy and the Increasing Role of Volumetric Voxel-based Post Therapy Dosimetry: A Case Report. Medical Research Archives, [S.l.], v. 10, n. 11, nov. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3379>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v10i11.3379.
Section
Case Reports

References

1. Jemal A, Ward EM, Johnson CJ, et al. Annual report to the nation on the status of cancer, 1975-2014, featuring survival. J Natl Cancer Inst. 2017;109(9): djx030.
doi:1 0.1093/jnci/djx030.
2. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9-29. doi:10.3322/caac.21208.
3. Kulik L. Criteria for liver transplantation in hepatocellular carcinoma. Clin Liver Dis (Hoboken). 2015;6(4)10:100-2.
doi: 10.1002/cld.499.
4. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450-1462.
doi: 10.1056/NEJMra1713263.
5. Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19(3):329-338. doi: 10.1055/s-2007-1007122.
6. Llovet JM, Di Bisceglie AM, Bruix J, et al; Panel of Experts in HCC-Design Clinical Trials. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. 2008;100(10):698-711. doi: 10.1093/jnci/djn134.
7. Sangro B, Carpanese L, Cianni R, et al; European Network on Radioembolization with Yttrium-90 Resin Microspheres (ENRY). Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology. 2011;54(3):868-878. doi: 10.1002/hep.24451.
8. Kallini JR, Gabr A, Salem R, Lewandowski RJ. Transarterial radioembolization with yttrium-90 for the treatment of hepatocellular carcinoma. Adv Ther. 2016;33(5):699-714. doi:10.1007/s12325-016-0324-7.
9. Tong AK, Kao YH, Too CW, Chin KF, Ng DC, Chow PK. Yttrium-90 hepatic radioembolization: clinical review and current techniques in interventional radiology and personalized dosimetry. Br J Radiol. 2016;89 (1062):20150943. doi: 10.1259/bjr.20150943.
10. Kennedy A, Nag S, Salem R, et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys. 2007;68(1):13-23. doi:10.1016/j.ijrobp.2006.11.060.
11. Salem R, Padia SA, Lam M, et al. Clinical and dosimetric considerations for Y90: recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging. 2019;46(8):1695-1704. doi: 10.1007/s00259-019-04340-5.
12. Son SH, Jang HS, Jo IY, et al. Significance of an increase in the Child-Pugh score after radiotherapy in patients with unresectable hepatocellular carcinoma. Radiat Oncol. 2014;9:101. doi: 10.1186/1748-717X-9-101.
13. Vouche M, Habib A, Ward TJ, et al. Unresectable solitary hepatocellular carcinoma not amenable to radiofrequency ablation: multicenter radiology-pathology correlation and survival of radiation segmentectomy. Hepatology. 2014;60(1):192 -201.
14. Garin E, Tselikas L, Guiu B, et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol. 2021; 6(1):17-29.
15. Kappadath SC, Mikell J, Balagopal A, Baladandayuthapani V, Kaseb A, Mahvash A. Hepatocellular carcinoma tumor dose response after 90Y-radioembolization with glass microspheres using 90Y-SPECT/CT-based voxel dosimetry. Int J Radiat Oncol Biol Phys. 2018;102(2):451-461.
16. Song YS, Paeng JC, Kim HC, et al. PET/CT-based dosimetry in 90Y-microsphere selective internal radiation therapy: single cohort comparison with pretreatment planning on (99m)Tc-MAA imaging and correlation with treatment efficacy. Medicine (Baltimore). 2015;94(23):e945.
doi: 10.1097/MD.0000000000000945.
17. Chan KT, Alessio AM, Johnson GE, et al. Prospective trial using internal pair-production positron emission tomography to establish the yttrium-90 radioembolization dose required for response of hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2018; 101(2):358-365.
18. Gabr A, Riaz A, Johnson GE, et al. Correlation of Y90-absorbed radiation dose to pathological necrosis in hepatocellular carcinoma: confirmatory multicenter analysis in 45 explants. Eur J Nucl Med Mol Imaging. 2021;48(2):580-583.
19. Padia SA, Lewandowski RJ, Johnson GE, et al; Society of Interventional Radiology Standards of Practice Committee. Radioembolization of hepatic malignancies: Background, quality improvement guidelines, and future directions. J Vasc Interv Radiol. 2017;28(1):1-15.
20. Riaz A, Awais R, Salem R. Side effects of yttrium-90 radioembolization. Front Oncol 2014;4:198. doi: 10.3389/fonc.2014.00198. Accessed 18 September 2022.
21. Sangro B, Gil-Alzugaray B, Rodriguez J, et al. Liver disease induced by radioembolization of liver tumors: description and possible risk factors. Cancer 2008;112(7):1538-1546.
22. Kennedy AS, McNeillie P, Dezarn WA, et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys. 2009;74(5):1494-1500.
23. Allimant C, Kafrouni M, Delicque J, et al. Tumor targeting and three-dimensional voxel-based dosimetry to predict tumor response, toxicity, and survival after yttrium-90 resin microsphere radioembolization in hepatocellular carcinoma. J Vasc Interv Radiol. 2018;29(12):1662-1670.e4.
24. Hermann A-L, Dieudonné A, Maxime R, et al. Role of 99mTc-macroaggregated albumin SPECT/CT based dosimetry in predicting survival and tumor response of patients with locally advanced and inoperable hepatocellular carcinoma (HCC) treated by selective intra-arterial radiation therapy (SIRT) with yttrium-90 resin microspheres, a cohort from SARAH study. J Hepatol. 2018;68(S1):S13. doi: 10.1016/S0168-8278(18)30243-5. Accessed September 18, 2020.
25. Kao YH, Steinberg JD, Tay YS, et al. Post-radioembolization yttrium-90 PET/CT-part 2: dose–response and tumor predictive dosimetry for resin microspheres. EJNMMI Res. 2013;3(1):57. doi:10.1186/2191-219X-3-57. Accessed September 18, 2022.
26. Chiesa C, Mira M, Maccauro M, et al. Radioembolization of hepatocarcinoma with 90Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging. 2015;42(11):1718–1738.
27. Walrand S, Chiesa C, Gabina PM, et al. Re: Tumor targeting and three-dimensional voxel-based dosimetry to predict tumor response, toxicity, and survival after yttrium-90 resin microsphere radioembolization in hepatocellular carcinoma. J Vasc Interv Radiol. 2019;30(12):2047–2048.
28. Cremonesi M, Chiesa C, Strigari L, et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol. 2014;19(4):210. doi: 10.3389/fonc.2014.00210.
Accessed September 18, 2022.
29. D’Arienzo M, Filippi L, Chiaramida P, et al. Absorbed dose to lesion and clinical outcome after liver radioembolization with 90Y microspheres: a case report of PET-based dosimetry. Ann Nucl Med. 2013;27(7):676–680.
30. Srinivas SM, Natarajan N, Kuroiwa J, et al. Determination of radiation absorbed dose to primary liver tumors and normal liver tissue using post-radioembolization (90)Y PET. Front Oncol. 2014;4:255. doi: 10.3389/fonc.2014.00255. Accessed September 18, 2022.
31. Lea WB, Tapp KN, Tann M, Hutchins GD, Fletcher JW, Johnson MS. Microsphere localization and dose quantification using positron emission tomography/CT following hepatic intraarterial radioembolization with yttrium-90 in patients with advanced hepatocellular carcinoma. J Vasc Interv Radiol. 2014;25(10):1595–1603.
32. Veenstra EB, Ruitier SJS, de Haas RJ, Bokkers RPH, de Jong KP, Noordzij W. Post-treatment three-dimensional voxel-based dosimetry after yttrium-90 resin microsphere radioembolization in HCC. EJNMMI.2022; 12(1):9. doi: 10.1186/s13550-022-00879-x. Accessed September 18, 2022.
33. Woerner AJ, Johnson GE. Advances in Y-90 radioembolization for the treatment of hepatocellular carcinoma. Hepatoma Res. 2022;8:2. doi: 10.20517/2394-5079-2021.122. Accessed September 18, 2022.
34. Potrebko PS, Shridhar R, Biagioli MC, et al. SPECT/CT image-based dosimetry for yttrium-90 radionuclide therapy: Application to treatment response. J Appl Clin Med Phys. 2018;19(5):435-443.
35. Xiao Y, Roncali E, Hobbs R, et al. Toward individualized voxel-level dosimetry for radiopharmaceutical therapy. Int J Radiat Oncol Biol Phys. 2021;109(4):902-904.
36. Divgi C, Carrasquillo JA, Meredith R. et al. Overcoming barriers to radiopharmaceutical therapy (RPT): An overview from the NRG-NCI Working Group on Dosimetry for Radiopharmaceutical Therapy. Int J Radiat Oncol Biol Phys. 2021;109(4):905-912.