Repetitive Nicotine Exposure on Efficacy of Temozolomide and Radiotherapy on Cultured Glioblastoma Cell Lines
Main Article Content
Abstract
Purpose: Of patients with glioblastoma who smoke tobacco, 16 to 28% will continue to smoke following diagnosis. Use of nicotine-containing products may enhance proliferation, migration and radioresistance and detrimentally affect treatment and prognosis of glioblastoma. The aim of this study is to identify effects of a period of nicotine exposure on efficacy of subsequent treatment with temozolomide and radiation therapy on 5 glioblastoma cell lines. We hypothesize that prior and continued nicotine exposure would reduce tumoricidal effects of temozolomide and radiation therapy.
Methods: After 5 glioblastoma cell cultures are exposed to nicotine prior to treatment with temozolomide and /or radiation, proliferation, migration, colony forming assays, and enzymatic expression of matrix metalloproteinases are assessed.
Results: Proliferation is not affected by exposure of physiologically relevant concentrations of nicotine prior to treatment with temozolomide or irradiation. Nicotine exposure has variable effects which include enhancement of migration rate, metalloproteinase expression, and colony formation for some glioblastoma cell lines subsequently treated with temozolomide and /or radiation therapy.
Conclusions: These findings suggest that continued smoking or use of other nicotine-containing products during treatment could result in increased aggressiveness and invasion of residual tumor cells causing a resistance to treatment in some glioblastoma.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Silvera SAN, Miller AB, Rohan TE. Cigarette smoking and risk of glioma: a prospective cohort study. Int J Cancer. 2006;118(7):1848-1851. doi:10.1002/ijc.21569
3. Efird JT, Friedman GD, Sidney S, et al. The risk for malignant primary adult-onset glioma in a large, multiethnic, managed-care cohort: cigarette smoking and other lifestyle behaviors. J Neurooncol. 2004;68(1):57-69.
4. Holick CN, Giovannucci EL, Rosner B, Stampfer MJ, Michaud DS. Prospective study of cigarette smoking and adult glioma: dosage, duration, and latency. Neuro-Oncol. 2007;9(3):326-334. doi:10.1215/15228517-2007-005
5. Li HX, Peng XX, Zong Q, et al. Cigarette smoking and risk of adult glioma: a meta-analysis of 24 observational studies involving more than 2.3 million individuals. OncoTargets Ther. 2016;9:3511-3523. doi:10.2147/OTT.S99713
6. Gritz ER, Dresler C, Sarna L. Smoking, the missing drug interaction in clinical trials: ignoring the obvious. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2005;14(10):2287-2293. doi:10.1158/1055-9965.EPI-05-0224
7. Gregorio DI, Hollenbeck M, Samociuk H. Who’s assessing tobacco use in cancer clinical trials? Nicotine Tob Res Off J Soc Res Nicotine Tob. 2009;11(11):1354-1358. doi:10.1093/ntr/ntp145
8. Florou AN, Gkiozos ICH, Tsagouli SK, Souliotis KN, Syrigos KN. Clinical significance of smoking cessation in subjects with cancer: a 30-year review. Respir Care. 2014;59(12):1924-1936. doi:10.4187/respcare.02559
9. Shenker RF, McTyre ER, Ruiz J, et al. The Effects of smoking status and smoking history on patients with brain metastases from lung cancer. Cancer Med. 2017;6(5):944-952. doi:10.1002/cam4.1058
10. Burke L, Miller LA, Saad A, Abraham J. Smoking behaviors among cancer survivors: an observational clinical study. J Oncol Pract. 2009;5(1):6-9. doi:10.1200/JOP.0912001
11. Tseng TS, Lin HY, Moody-Thomas S, Martin M, Chen T. Who tended to continue smoking after cancer diagnosis: the national health and nutrition examination survey 1999-2008. BMC Public Health. 2012;12:784. doi:10.1186/1471-2458-12-784
12. Mutlu H, Akca Z, Erden A, et al. Lack of sunlight exposure influence on primary glioblastoma survival. Asian Pac J Cancer Prev APJCP. 2014;15(10):4165-4168.
13. Seliger C, Ricci C, Meier CR, et al. Diabetes, use of antidiabetic drugs, and the risk of glioma. Neuro-Oncol. 2016;18(3):340-349. doi:10.1093/neuonc/nov100
14. Travers S, Litofsky NS. Daily Lifestyle Modifications to Improve Quality of Life and Survival in Glioblastoma: A Review. Brain Sci. 2021;11(5):533. doi:10.3390/brainsci11050533
15. Sterckx W, Coolbrandt A, Dierckx de Casterlé B, et al. The impact of a high-grade glioma on everyday life: A systematic review from the patient’s and caregiver’s perspective. Eur J Oncol Nurs. 2013;17(1):107-117. doi:10.1016/j.ejon.2012.04.006
16. Berger MR, Zeller WJ. Interaction of nicotine with anticancer treatment. Klin Wochenschr. 1988;66 Suppl 11:127-133.
17. Petros WP, Younis IR, Ford JN, Weed SA. Effects of tobacco smoking and nicotine on cancer treatment. Pharmacotherapy. 2012;32(10):920-931. doi:10.1002/j.1875-9114.2012.01117
18. Khalil AA, Jameson MJ, Broaddus WC, Lin PS, Chung TD. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation. Brain Tumor Pathol. 2013;30(2):73-83. doi:10.1007/s10014-012-0101-5
19. Pucci S, Fasoli F, Moretti M, et al. Choline and nicotine increase glioblastoma cell proliferation by binding and activating α7- and α9- containing nicotinic receptors. Pharmacol Res. 2021;163:105336. doi:10.1016/j.phrs.2020.105336
20. Thompson EG, Sontheimer H. Acetylcholine Receptor Activation as a Modulator of Glioblastoma Invasion. Cells. 2019;8(10). doi:10.3390/cells8101203
21. Nakada M, Okada Y, Yamashita J. The role of matrix metalloproteinases in glioma invasion. Front Biosci J Virtual Libr. 2003;8:e261-269.
22. Zhou W, Yu X, Sun S, et al. Increased expression of MMP-2 and MMP-9 indicates poor prognosis in glioma recurrence. Biomed Pharmacother. 2019;118:109369. doi:10.1016/j.biopha.2019.109369
23. Xue Q, Cao L, Chen XY, et al. High expression of MMP9 in glioma affects cell proliferation and is associated with patient survival rates. Oncol Lett. 2017;13(3):1325-1330. doi:10.3892/ol.2017.5567
24. Martínez-García E, Irigoyen M, González-Moreno O, et al. Repetitive nicotine exposure leads to a more malignant and metastasis-prone phenotype of SCLC: a molecular insight into the importance of quitting smoking during treatment. Toxicol Sci Off J Soc Toxicol. 2010;116(2):467-476. doi:10.1093/toxsci/kfq138
25. Nashmi R, Xiao C, Deshpande P, et al. Chronic Nicotine Cell Specifically Upregulates Functional α4* Nicotinic Receptors: Basis for Both Tolerance in Midbrain and Enhanced Long-Term Potentiation in Perforant Path. J Neurosci. 2007;27(31):8202-8218. doi:10.1523/JNEUROSCI.2199-07.2007
26. Ostermann S, Csajka C, Buclin T, et al. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(11):3728-3736. doi:10.1158/1078-0432.CCR-03-0807
27. Temozolomide (CCRG 81045) | ≥99%(HPLC) | Selleck | DNA/RNA Synthesis chemical. selleckchem.com. Accessed July 19, 2021. https://www.selleckchem.com/products/Methazolastone.html
28. Chung T, Broaddus W, Khalil A, Khan A, Valerie K. The effects of ERB-B1/2 inhibitor, AEE-788 tobacco alkaloid, nicotine, on EGFR expression and phosphorylation and cell growth in U87 malignant glioma cells. Cancer Res. 2007;67(9 Supplement):LB-25-LB-25.
29. Park CM, Park MJ, Kwak HJ, et al. Ionizing Radiation Enhances Matrix Metalloproteinase-2 Secretion and Invasion of Glioma Cells through Src/Epidermal Growth Factor Receptor–Mediated p38/Akt and Phosphatidylinositol 3-Kinase/Akt Signaling Pathways. Cancer Res. 2006;66(17):8511-8519. doi:10.1158/0008-5472.CAN-05-4340
30. Whitehead CA, Nguyen HPT, Morokoff AP, et al. Inhibition of Radiation and Temozolomide-Induced Invadopodia Activity in Glioma Cells Using FDA-Approved Drugs.
31. Mao L, Whitehead CA, Paradiso L, et al. Enhancement of invadopodia activity in glioma cells by sublethal doses of irradiation and temozolomide. J Neurosurg. 2017;129(3):598-610. doi:10.3171/2017.5.JNS17845
32. Pasi F, Paolini A, Nano R, Di Liberto R, Capelli E. Effects of Single or Combined Treatments with Radiation and Chemotherapy on Survival and Danger Signals Expression in Glioblastoma Cell Lines. BioMed Res Int. 2014;2014:e453497. doi:10.1155/2014/453497
33. Kyte SL, Gewirtz DA. The Influence of Nicotine on Lung Tumor Growth, Cancer Chemotherapy, and Chemotherapy-Induced Peripheral Neuropathy. J Pharmacol Exp Ther. 2018;366(2):303-313. doi:10.1124/jpet.118.249359
34. Bobola MS, Kolstoe DD, Blank A, Silber JR. Minimally cytotoxic doses of temozolomide produce radiosensitization in human glioblastoma cells regardless of MGMT expression. Mol Cancer Ther. 2010;9(5):1208-1218. doi:10.1158/1535-7163.MCT-10-0010
35. Brassesco MS, Roberto GM, Morales AG, et al. Inhibition of NF-κB by Dehydroxymethylepoxyquinomicin Suppresses Invasion and Synergistically Potentiates Temozolomide and γ-Radiation Cytotoxicity in Glioblastoma Cells. Chemother Res Pract. 2013;2013. doi:10.1155/2013/593020
36. Hagemann C, Anacker J, Ernestus RI, Vince GH. A complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J Clin Oncol. 2012;3(5):67-79. doi:10.5306/wjco.v3.i5.67
37. Sato A, Sunayama J, Matsuda K, et al. MEK-ERK signaling dictates DNA-repair gene MGMT expression and temozolomide resistance of stem-like glioblastoma cells via the MDM2-p53 axis. Stem Cells. 2011;29(12):1942-1951. doi:10.1002/stem.753
38. Haas B, Klinger V, Keksel C, et al. Inhibition of the PI3K but not the MEK/ERK pathway sensitizes human glioma cells to alkylating drugs. Cancer Cell Int. 2018;18:69. doi:10.1186/s12935-018-0565-4
39. Verbois SL, Scheff SW, Pauly JR. Chronic nicotine treatment attenuates alpha 7 nicotinic receptor deficits following traumatic brain injury. Neuropharmacology. 2003;44(2):224-233. doi:10.1016/s0028-3908(02)00366-0
40. Suzuki Y, Fujioka K, Ikeda K, Murayama Y, Manome Y. Temozolomide does not influence the transcription or activity of matrix metalloproteinases 9 and 2 in glioma cell lines. J Clin Neurosci Off J Neurosurg Soc Australas. 2017;41:144-149. doi:10.1016/j.jocn.2017.03.048
41. Warren GW, Romano MA, Kudrimoti MR, et al. Nicotinic modulation of therapeutic response in vitro and in vivo. Int J Cancer. 2012;131(11):2519-2527. doi:10.1002/ijc.27556
42. Méndez O, Zavadil J, Esencay M, et al. Knock down of HIF-1α in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Mol Cancer. 2010;9:133. doi:10.1186/1476-4598-9-133
43. Zhang Q, Tang X, Zhang ZF, Velikina R, Shi S, Le AD. Nicotine induces hypoxia-inducible factor-1alpha expression in human lung cancer cells via nicotinic acetylcholine receptor-mediated signaling pathways. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13(16):4686-4694. doi:10.1158/1078-0432.CCR-06-2898
44. Zagzag D, Lukyanov Y, Lan L, et al. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest. 2006;86(12):1221-1232. doi:10.1038/labinvest.3700482
45. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncol. 2005;7(2):134-153. doi:10.1215/S1152851704001115
46. Hagemann C, Anacker J, Ernestus RI, Vince GH. A complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J Clin Oncol. 2012;3(5):67-79. doi:10.5306/wjco.v3.i5.67
47. Hagemann C, Anacker J, Haas S, et al. Comparative expression pattern of Matrix-Metalloproteinases in human glioblastoma cell-lines and primary cultures. BMC Res Notes. 2010;3:293. doi:10.1186/1756-0500-3-293
48. Verbois SL, Hopkins DM, Scheff SW, Pauly JR. Chronic intermittent nicotine administration attenuates traumatic brain injury-induced cognitive dysfunction. Neuroscience. 2003;119(4):1199-1208. doi:10.1016/S0306-4522(03)00206-9