Mouth Breathing: Understanding the Pathophysiology of an oral habit and its consequences

Main Article Content

Ramirez-Yanez German O., DDS, MDSc, MSc, PhD

Abstract

Mouth breathing is a sign associated with Sleep and Breathing related Disorders and Obstructive Sleep Apnea in children. The aim of this paper is to provide a comprehensive overview of the changes in the human physiology when mouth breathing and, how it may affect the oral and general health in humans. The potential reactions produced at the cellular level and, how those reactions may lead to a negative impact in the human health are presented. Mouth breathing affects the O2/CO2 exchange at the lungs, which may lead to the production of the Hypoxia Inducible Factor (HIF) in all the cells in the human body, as well as stimulates the production of Erythropoietin in the kidney.  Mouth breathing also causes a major loose of CO2, which increases the production of bicarbonates in the kidney and release of essential minerals through the urine. All those reactions may facilitate the development and progression of chronic diseases in humans. It is recommended to consider mouth breathing as an oral habit that may associate with a cascade of events in the human physiology leading to chronic health problems. The health professionals should consider mouth breathing as a health risk factor and treat it as early as possible.

Article Details

How to Cite
O., Ramirez-Yanez German. Mouth Breathing: Understanding the Pathophysiology of an oral habit and its consequences. Medical Research Archives, [S.l.], v. 11, n. 1, jan. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3478>. Date accessed: 15 nov. 2024. doi: https://doi.org/10.18103/mra.v11i1.3478.
Section
Review Articles

References

1. Basheer B, Hegde K, Bhat S, Umar D, Baroudi K. Influence of mouth breathing on the dentofacial growth of children: a cephalometric study. J Int Oral Health. 2014;6(6):50-55.
2. Harvold E, Tomer B, Vargervik K, Chierici G. Primate experiments on oral respiration. Am J Orthod. 1981;79(4):359-372.
3. Harari D, Redlich M, Miri S, Hamud T, Gross M. The effect of mouth breathing versus nasal breathing on dentofacial and craniofacial development in orthodontic patients. Laryngoscope. 2010;120:2089-2093.
4. Ali A, Richmond S, Popat H, et al. The influence of snoring, mouth breathing and apnoea on facial morphology in late childhood: a three-dimensional study. BMJ Open. 2015;5(9):1-9.
5. Morais-Almeida M, Wandalsen G, Solé D. Growth and mouth breathers. J Pediatr (Rio J). 2019;95 (1):66-71.
6. Bell D. Discusion on the Mouth-Breather. Proceedings of the Royal Society of Medicine. 1958;51(October 25, 1957):279-285.
7. Abreu R, Rocha R, Lamounier J, Guerra A. Prevalence of mouth breathing among children. J Pediatr (Rio J). 2008 84(5):467-470.
8. Fitzpatrick M, McLean H, Urton A, Tan A, O'Donnell D, Driver H. Effect of nasal or oral breathing route on upper airway resistance during sleep. Eur Respir J. 2003;22(5):827-832.
9. Lee S, Guilleminault C, Chiu H, Sullivan S. Mouth breathing, "nasal disuse," and pediatric sleep-disordered breathing. Sleep Breath. 2015;19(4):1257-1264.
10. Soh H, Rowe K, Davey M, Horne R, Nixon G. The OSA-5: Development and validation of a brief questionnaire screening tool for obstructive sleep apnea in children. Int J Pediatr Otorhinolaryngol. 2018;113:62-66.
11. Kim E, Choi J, Kim K, et al. The impacts of open-mouth breathing on upper airway space in obstructive sleep apnea: 3-D MDCT analysis. Eur Arch Otorhinolaryngol. 2011;268(4):533-539.
12. Guilleminault C, Akhtar F. Pediatric sleep-disordered breathing: New evidence on its development. Sleep Med Rev. 2015;24:46-56.
13. Guilleminault C, Huang Y, Chin W, Okorie C. The nocturnal-polysomnogram and "non-hypoxic sleep-disordered-breathing" in children. Sleep Med. 2019;60(31-44).
14. Izu S, Itamoto C, Pradella-Hallinan M, et al. Obstructive sleep apnea syndrome (OSAS) in mouth breathing children. Braz J Otorhinolaryngol. 2010;76:552-556.
15. Mitchell R, Archer S, Ishman S, et al. Clinical Practice Guideline: Tonsillectomy in Children (Update). Otolaryngology – Head and Neck Surgery. 2019;160(1S):S1–S42.
16. Beebe D, Rausch J, Byars K, Lanphear B, Yolton K. Persistent snoring in preschool children: predictors and behavioral and developmental correlates. Pediatrics. 2012;130(3):382-389.
17. Bhattacharjee R, Kheirandish-Gozal L, Spruyt K, et al. Adenotonsillectomy outcomes in treatment of obstructive sleep apnea in children: a multicenter retrospective study. Am J Respir Crit Care Med. 2010;182:676-683.
18. Hultcrantz E, Löfstrand Tideström B. The development of sleep disordered breathing from 4 to 12 years and dental arch morphology. Int J Pediatr Otorhinolaryngol. 2009;73:1234-1241.
19. Beebe D, Wells C, Jeffries J, Chini B, Kalra M, Amin R. Neuropsychological effects of pediatric obstructive sleep apnea. J Int Neuropsychol Soc. 2004;10(7):962-975.
20. Edwards K, Kamat R, Tomfohr L, Ancoli-Israel S, Dimsdale J. Obstructive sleep apnea and neurocognitive performance: the role of cortisol. Sleep Med. 2014;15:27-32.
21. Niaki E, Chalipa J, Taghipoor E. Evaluation of oxygen saturation by pulse-oximetry in mouth breathing patients. Acta Med Iran. 2010;48(1):9-11.
22. Kaditis A, Kheirandish-Gozal L, Gozal D. Pediatric OSAS: oximetry can provide answers when polysomnography is not available. Sleep Med Rev. 2016; 27:96-105.
23. Hornero R, Kheirandish-Gozal L, Gutiérrez-Tobal G, et al. Nocturnal Oximetry-based Evaluation of Habitually Snoring Children. Am J Respir Crit Care Med. 2017;196(12):1591-1598.
24. Lopes Veron H, Antunes A, de Moura Milanesi J, Rodrigues Corrêa E. Implications of mouth breathing on the pulmonary function and respiratory muscles. Rev CEFAC. 2016;18(1):242-251.
25. Trevisan M, Boufleur J, Soares J, Haygert C, Ries L, Corrêa E. Diaphragmatic amplitude and accessory inspiratory muscle activity in nasal and mouth-breathing adults: a cross-sectional study. J Electromyogr Kinesiol. 2015;25(3):463-468.
26. Silveira W, Mello F, Guimarães F, Menezes S. Postural alterations and pulmonary function of mouth-breathing children. Braz J Otorhinolaryngol. 2010;76(6):683-686.
27. LaComb C, Tandy R, Lee S, Young J, Navalta J. Oral versus Nasal Breathing during Moderate to High Intensity Submaximal Aerobic Exercise. IntJKinesiolSportSci. 2017;5(1):8-16.
28. Lapennas G. The magnitude of the Bohr coefficient: optimal for oxygen delivery. Respir Physiol. 1983;54(2):161-172.
29. Malte H, Lykkeboe G. The Bohr/Haldane effect: a model-based uncovering of the full extent of its impact on O2 delivery to and CO2 removal from tissues. J Appl Physiol. 2018;125(3):916-922.
30. Jensen F. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand. 2004;182(3):215-227.
31. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10(7):1257-1272.
32. Semenza G, Nejfelt M, Chi S, Antonarakis SU, , . Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc Natl Acad Sci U S A. 1991;88:5680-5684.
33. Wang G, Jiang B, Rue E, Semenza G. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92:5510-5514.
34. Weidemann A, Johnson R. Biology of HIF-1a. Cell Death Dif. 2008;15:621–627.
35. Cockman M, Masson N, Mole D, et al. Hypoxia Inducible Factor-a Binding and Ubiquitylation by the von Hippel-Lindau Tumor Suppressor Protein. JBiolChem. 2000;275(33):25733–25741.
36. Semenza G. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. 2012;33(4):207-214.
37. Macklin P, McAuliffe J, Pugh C, Yamamoto A. Hypoxia and HIF pathway in cancer and the placenta. Placenta. 2017;56:8-13.
38. Keith B, Simon C. Hypoxia-Inducible Factors, Stem Cells, and Cancer. Cell. 2007;129(3):465-472.
39. Yanqing H, Lin D, Taniguchi C. Hypoxia inducible factor (HIF) in the Tumor Microenvironment: Friend or foe? Sci China Life Sci. 2017 60(10):1114=1124.
40. Terraneo L, Samaja M. Comparative Response of Brain to Chronic Hypoxia and Hyperoxia. Int J Mol Sci. 2017;18(9):E1914.
41. Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia--revisited--the bad ugly and good: implications to the heart and brain. Sleep Med Rev. 2015;20:27-45.
42. Halbower A, Degaonkar M, Barker P, et al. Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury. PLoS Med. 2006;3(8):1901-1402.
43. Kheirandish-Gozal L, Bhattacharjee R, Gozal D. Autonomic alterations and endothelial dysfunction in pediatric obstructive sleep apnea. Sleep Med. 2010;11(7):714-720.
44. Gozal D. Sleep, sleep disorders and inflammation in children. Sleep Med. 2009;10(Suppl 1):S12-16.
45. Nisbet L, Yiallourou S, Biggs S, et al. Preschool children with obstructive sleep apnea: the beginnings of elevated blood pressure? Sleep. 2013;36(8):1219-1226.