Targeting Calpain-2 for Alzheimer’s Disease Treatment

Main Article Content

Amy F.T. Arnsten Michel Baudry

Abstract

There is an urgent need for treatments for sporadic Alzheimer’s Disease (sAD). Although antibodies removing ß-amyloid have recently been shown to slow disease progression, the degenerative course continues. Thus, there is a need for strategies that intervene early in the degenerative process, before irreversible damage is done to neurons (e.g., by autophagic degeneration). This review will summarize the evidence indicating that targeting calpain-2 with a selective inhibitor might represent a novel strategy for the treatment of sAD. Calpains are neutral proteases that are activated by intracellular calcium. The two main isoforms are calpain-1, which is activated by low, micromolar levels of calcium and generally has beneficial effects for cellular health, and calpain-2, which is activated by high, almost millimolar levels of calcium and mediates many of calcium’s toxic actions. Calcium signaling becomes dysregulated with advancing age due to loss of regulatory proteins such as calbindin, and is pronounced in sAD brain tissue, including signs of calcium leakage from the smooth endoplasmic reticulum (SER) through phosphorylated ryanodine receptors (pRyR2). Both calpain-1 and calpain-2 are elevated in AD brains and herald the rise in tau pathology, but only calpain-2 is localized with neurofibrillary tangles (NFTs) and pretangles. Calpain drives a spectrum of AD-related pathologies, and in particular, calpain drives tau hyperphosphorylation by cleaving, and thus disinhibiting, kinases central to tau hyperphosphorylation, i.e., GSK3β and cdk5, as well as increasing Aβ formation and autophagic degeneration. Thus calpain-2 inhibitors may reduce a spectrum of sAD pathology, protecting neurons at very early stages of disease.

Article Details

How to Cite
ARNSTEN, Amy F.T.; BAUDRY, Michel. Targeting Calpain-2 for Alzheimer’s Disease Treatment. Medical Research Archives, [S.l.], v. 11, n. 2, feb. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3487>. Date accessed: 21 dec. 2024. doi: https://doi.org/10.18103/mra.v11i2.3487.
Section
Research Articles

References

1. Baudry M, Bi X. Calpain-1 and Calpain-2: The Yin and Yang of Synaptic Plasticity and Neurodegeneration. Trends Neurosci. Feb 10 2016;doi:10.1016/j.tins.2016.01.007
2. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev. Apr 2001;81(2):741-66. doi:10.1152/physrev.2001.81.2.741
3. Katzman R, Saitoh T. Advances in Alzheimer's disease. FASEB J. Mar 1 1991;5(3):278-86.
4. Salmon DP, Thomas RG, Pay MM, et al. Alzheimer's disease can be accurately diagnosed in very mildly impaired individuals. Neurology. Oct 8 2002;59(7):1022-8. doi:10.1212/wnl.59.7.1022
5. DeKosky ST, Scheff SW, Styren SD. Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration. Dec 1996;5(4):417-21. doi:10.1006/neur.1996.0056
6. Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. Feb 21 1991;349(6311):704-6. doi:10.1038/349704a0
7. Cruts M, Van Broeckhoven C. Presenilin mutations in Alzheimer's disease. Hum Mutat. 1998;11(3):183-90. doi:10.1002/(SICI)1098-1004(1998)11:3<183::AID-HUMU1>3.0.CO;2-J
8. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. Jul 19 2002;297(5580):353-6. doi:10.1126/science.1072994
9. Onyango IG, Khan SM. Oxidative stress, mitochondrial dysfunction, and stress signaling in Alzheimer's disease. Curr Alzheimer Res. Sep 2006;3(4):339-49. doi:10.2174/156720506778249489
10. Anderson R, Hadjichrysanthou C, Evans S, Wong M. Why do so many clinical trials of therapies for Alzheimer’s disease fail? Lancet. 2017;390:2327-2329.
11. Cummings J. Lessons learned from Alzheimer Disease: Clinical trials with negative outcomes. J Clin Transl Sci. 2018;11:147-152.
12. Yiannopoulou KG, Anastasiou AI, Zachariou V, Pelidou SH. Reasons for Failed Trials of Disease-Modifying Treatments for Alzheimer Disease and Their Contribution in Recent Research. Biomedicines. Dec 9 2019;7(4)doi:10.3390/biomedicines7040097
13. van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in Early Alzheimer's Disease. N Engl J Med. Nov 29 2022;doi:10.1056/NEJMoa2212948
14. Elmaleh DR, Farlow MR, Conti PS, Tompkins RG, Kundakovic L, Tanzi RE. Developing Effective Alzheimer's Disease Therapies: Clinical Experience and Future Directions. J Alzheimers Dis. 2019;71(3):715-732. doi:10.3233/JAD-190507
15. Jeremic D, Jimenez-Diaz L, Navarro-Lopez JD. Past, present and future of therapeutic strategies against amyloid-beta peptides in Alzheimer's disease: a systematic review. Ageing Res Rev. Dec 2021;72:101496. doi:10.1016/j.arr.2021.101496
16. Reiss AB, Montufar N, DeLeon J, et al. Alzheimer Disease Clinical Trials Targeting Amyloid: Lessons Learned From Success in Mice and Failure in Humans. Neurologist. Mar 4 2021;26(2):52-61. doi:10.1097/NRL.0000000000000320
17. Arnsten AFT, Datta D, Del Tredici K, Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer's disease. Alzheimers Dement. Jan 2021;17(1):115-124. doi:10.1002/alz.12192
18. Giannakopoulos P, Hermann F, Bussiere T, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology. 2003;60:1495-1500.
19. Peng C, Trojanowski JQ, Lee VM. Protein transmission in neurodegenerative disease. Nat Rev Neurol. Apr 2020;16(4):199-212. doi:10.1038/s41582-020-0333-7
20. Paspalas CD, Carlyle BC, Leslie S, et al. The aged rhesus macaque manifests Braak stage III/IV Alzheimer's-like pathology. Alzheimers Dement. May 2018;14(5):680-691. doi:10.1016/j.jalz.2017.11.005
21. Busche MA, Hyman BT. Synergy between amyloid-beta and tau in Alzheimer's disease. Nat Neurosci. Oct 2020;23(10):1183-1193. doi:10.1038/s41593-020-0687-6
22. Dash PK, Moore AN, Kobori N, Runyan JD. Molecular activity underlying working memory. Learn Mem. Aug 2007;14(8):554-63. doi:10.1101/lm.558707
23. Arnsten AF, Wang MJ, Paspalas CD. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron. Oct 4 2012;76(1):223-39. doi:10.1016/j.neuron.2012.08.038
24. Khatchaturian Z. Calcium, membranes, aging, and Alzheimer’s disease. Introduction and overview. Ann N Y Acad Sci. 1989;568:1-4.
25. Khatchaturian Z. Calcium hypothesis of Alzheimer;s disease and brain aging. Ann N Y Acad Sci. 1994;747:1-11.
26. Berridge MJ. Calcium signalling and Alzheimer's disease. Neurochem Res. Jul 2011;36(7):1149-56. doi:10.1007/s11064-010-0371-4
27. Workgroup AsACH. Calcium hypothesis of Alzheimer;s disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement. 2017;13:178-182.
28. Mattson MP, Chan SL. Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits. J Mol Neurosci. Oct 2001;17(2):205-24. doi:10.1385/JMN:17:2:205
29. McBrayer M, Nixon RA. Lysosome and calcium dysregulation in Alzheimer's disease: partners in crime. Biochem Soc Trans. Dec 2013;41(6):1495-502. doi:10.1042/BST20130201
30. Elston GN. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb Cortex. Nov 2003;13(11):1124-38. doi:10.1093/cercor/bhg093
31. Arnsten AF, Jin LE. Molecular influences on working memory circuits in dorsolateral prefrontal cortex. Prog Mol Biol Transl Sci. 2014;122:211-31. doi:10.1016/B978-0-12-420170-5.00008-8
32. Braak H, Del Tredici K. Spreading of Tau Pathology in Sporadic Alzheimer's Disease Along Cortico-cortical Top-Down Connections. Cereb Cortex. Sep 1 2018;28(9):3372-3384. doi:10.1093/cercor/bhy152
33. He B, Perez SE, Lee SH, Ginsberg SD, Malek-Ahmadi M, Mufson EJ. Expression profiling of precuneus layer III cathepsin D-immunopositive pyramidal neurons in mild cognitive impairment and Alzheimer's disease: Evidence for neuronal signaling vulnerability. J Comp Neurol. Nov 1 2020;528(16):2748-2766. doi:10.1002/cne.24929
34. Poduri A, Gearing M, Rebeck GW, Mirra SS, Tigges J, Hyman BT. Apolipoprotein E4 and beta amyloid in senile plaques and cerebral blood vessels of aged rhesus monkeys. Am J Pathol. Jun 1994;144(6):1183-7.
35. Skeberdis VA, Chevaleyre V, Lau CG, et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat Neurosci. Apr 2006;9(4):501-10. doi:10.1038/nn1664
36. Arnsten AFT, Datta D, Wang M. The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Mol Psychiatry. Aug 2021;26(8):3684-3700. doi:10.1038/s41380-020-00973-3
37. Veinbergs I, Everson A, Sagara Y, Masliah E. Neurotoxic effects of apolipoprotein E4 are mediated via dysregulation of calcium homeostasis. J Neurosci Res. Feb 1 2002;67(3):379-87. doi:10.1002/jnr.10138
38. Jiang L, Zhong J, Dou X, Cheng C, Huang Z, Sun X. Effects of ApoE on intracellular calcium levels and apoptosis of neurons after mechanical injury. Neuroscience. Aug 20 2015;301:375-83. doi:10.1016/j.neuroscience.2015.06.005
39. Tambini MD, Pera M, Kanter E, et al. ApoE4 upregulates the activity of mitochondria-associated ER membranes. EMBO Rep. Jan 2016;17(1):27-36. doi:10.15252/embr.201540614
40. Ramakrishna S, Jhaveri V, Konings SC, et al. APOE4 Affects Basal and NMDAR-Mediated Protein Synthesis in Neurons by Perturbing Calcium Homeostasis. J Neurosci. Oct 20 2021;41(42):8686-8709. doi:10.1523/JNEUROSCI.0435-21.2021
41. Datta D, Leslie SN, Wang M, et al. Age-related calcium dysregulation linked with tau pathology and impaired cognition in non-human primates. Alzheimers Dement. Jun 2021;17(6):920-932. doi:10.1002/alz.12325
42. Lacampagne A, Liu X, Reiken S, et al. Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer's disease-like pathologies and cognitive deficits. Acta Neuropathol. Nov 2017;134(5):749-767. doi:10.1007/s00401-017-1733-7
43. Arnsten AFT, Datta D, Leslie S, Yang ST, Wang M, Nairn AC. Alzheimer's-like pathology in aging rhesus macaques: Unique opportunity to study the etiology and treatment of Alzheimer's disease. Proc Natl Acad Sci U S A. Dec 23 2019;doi:10.1073/pnas.1903671116
44. Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of neuronal calcium homeostasis in Alzheimer's disease - A therapeutic opportunity? Biochem Biophys Res Commun. Feb 19 2017;483(4):998-1004. doi:10.1016/j.bbrc.2016.09.053
45. Chami M, Checler F. Alterations of the Endoplasmic Reticulum (ER) Calcium Signaling Molecular Components in Alzheimer's Disease. Cells. Dec 1 2020;9(12)doi:10.3390/cells9122577
46. Mattson MP. Calcium and neurodegeneration. Aging Cell. Jun 2007;6(3):337-50. doi:10.1111/j.1474-9726.2007.00275.x
47. Santulli G, Lewis D, des Georges A, Marks AR, Frank J. Ryanodine Receptor Structure and Function in Health and Disease. Subcell Biochem. 2018;87:329-352. doi:10.1007/978-981-10-7757-9_11
48. Zhang L, Trushin S, Christensen TA, et al. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease. Sci Rep. Jan 5 2016;6:18725. doi:10.1038/srep18725
49. Morozov YM, Datta D, Paspalas CD, Arnsten AFT. Ultrastructural evidence for impaired mitochondrial fission in the aged rhesus monkey dorsolateral prefrontal cortex. Neurobiol Aging. Mar 2017;51:9-18. doi:10.1016/j.neurobiolaging.2016.12.001
50. Kish SJ, Bergeron C, Rajput A, et al. Brain cytochrome oxidase in Alzheimer's disease. J Neurochem. Aug 1992;59(2):776-9. doi:10.1111/j.1471-4159.1992.tb09439.x
51. Mutisya EM, Bowling AC, Beal MF. Cortical cytochrome oxidase activity is reduced in Alzheimer's disease. J Neurochem. Dec 1994;63(6):2179-84. doi:10.1046/j.1471-4159.1994.63062179.x
52. Gibson GE, Sheu KF, Blass JP. Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm (Vienna). 1998;105(8-9):855-70. doi:10.1007/s007020050099
53. Castellani R, Hirai K, Aliev G, et al. Role of mitochondrial dysfunction in Alzheimer's disease. J Neurosci Res. Nov 1 2002;70(3):357-60. doi:10.1002/jnr.10389
54. Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci. May 1 2001;21(9):3017-23.
55. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol. Apr 14 2003;161(1):41-54. doi:10.1083/jcb.200207030
56. Nixon RA, Saito KI, Grynspan F, et al. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann N Y Acad Sci. Dec 15 1994;747:77-91.
57. Mahaman YAR, Huang F, Kessete Afewerky H, Maibouge TMS, Ghose B, Wang X. Involvement of calpain in the neuropathogenesis of Alzheimer's disease. Med Res Rev. Mar 2019;39(2):608-630. doi:10.1002/med.21534
58. Baudry M, Su W, Bi X. The calpain proteolytic system. Encyclopedia of Cell Biology. 2nd Edition ed2022.
59. Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA. Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer's disease. Brain Res. Jul 25 1997;763(2):145-58.
60. Ahmad F, Das D, Kommaddi RP, et al. Isoform-specific hyperactivation of calpain-2 occurs presymptomatically at the synapse in Alzheimer's disease mice and correlates with memory deficits in human subjects. Sci Rep. Sep 3 2018;8(1):13119. doi:10.1038/s41598-018-31073-6
61. Nixon R. Calcium-activated neutral proteinases as regulators of cellular function. Implications for Alzheimer’s disease pathogenesis. Ann N Y Acad Sci. 1989;568:198-208.
62. Siman R. Proteolytic mechanism for the neurodegeneration of Alzheimer's disease. Ann N Y Acad Sci. Dec 31 1992;674:193-202. doi:10.1111/j.1749-6632.1992.tb27488.x
63. Nixon R. A “protease activation cascade” in the pathogenesis of Alzheimer’s disease. Ann N Y Acad Sci. 2000;924:117-131.
64. Nixon R. The calpains in aging and aging-related diseases. Ageing Res Rev. 2003;2:407-418.
65. Higuchi M, Tomioka M, Takano J, et al. Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in mice overexpressing their specific inhibitors. J Biol Chem. Apr 15 2005;280(15):15229-37. doi:10.1074/jbc.M500939200
66. Tsai LH, Lee MS, Cruz J. Cdk5, a therapeutic target for Alzheimer's disease? Biochim Biophys Acta. Mar 11 2004;1697(1-2):137-42. doi:10.1016/j.bbapap.2003.11.019
67. Carragher NO. Calpain inhibition: a therapeutic strategy targeting multiple disease states. Curr Pharm Des. 2006;12(5):615-38. doi:10.2174/138161206775474314
68. Cagmat EB, Guingab-Cagmat JD, Vakulenko AV, Hayes RL, Anagli J. Potential Use of Calpain Inhibitors as Brain Injury Therapy. In: Kobeissy FH, ed. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. 2015. Frontiers in Neuroengineering.
69. Donkor IO. An update on the therapeutic potential of calpain inhibitors: a patent review. Expert Opin Ther Pat. Sep 2020;30(9):659-675. doi:10.1080/13543776.2020.1797678
70. Rao MV, Mohan PS, Peterhoff CM, et al. Marked calpastatin (CAST) depletion in Alzheimer's disease accelerates cytoskeleton disruption and neurodegeneration: neuroprotection by CAST overexpression. J Neurosci. Nov 19 2008;28(47):12241-54. doi:10.1523/JNEUROSCI.4119-08.2008
71. Lon HK, Mendonca N, Goss S, et al. Pharmacokinetics, Safety, Tolerability, and Pharmacodynamics of Alicapistat, a Selective Inhibitor of Human Calpains 1 and 2 for the Treatment of Alzheimer Disease: An Overview of Phase 1 Studies. Clin Pharmacol Drug Dev. Apr 2019;8(3):290-303. doi:10.1002/cpdd.598
72. Liang B, Duan BY, Zhou XP, Gong JX, Luo ZG. Calpain activation promotes BACE1 expression, amyloid precursor protein processing, and amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Biol Chem. Sep 3 2010;285(36):27737-44. doi:10.1074/jbc.M110.117960
73. Sahara S, Yamashima T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem Biophys Res Commun. Mar 19 2010;393(4):806-11. doi:10.1016/j.bbrc.2010.02.087
74. Yamashima T. Reconsider Alzheimer's disease by the ‘calpain–cathepsin hypothesis’—a perspective review. Progress in neurobiology. 2013;105:1-23.
75. Kurbatskaya K, Phillips EC, Croft CL, et al. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain. Acta Neuropathol Commun. Mar 31 2016;4:34. doi:10.1186/s40478-016-0299-2
76. Ferreira A, Bigio EH. Calpain-mediated tau cleavage: a mechanism leading to neurodegeneration shared by multiple tauopathies. Mol Med. 2011;17(7-8):676-85. doi:10.2119/molmed.2010.00220
77. Barthelemy NR, Horie K, Sato C, Bateman RJ. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer's disease. J Exp Med. Nov 2 2020;217(11)doi:10.1084/jem.20200861
78. Janelidze S, Palmqvist S, Leuzy A, et al. Detecting amyloid positivity in early Alzheimer's disease using combinations of plasma Abeta42/Abeta40 and p-tau. Alzheimers Dement. Feb 2022;18(2):283-293. doi:10.1002/alz.12395
79. Liu F, Liang Z, Shi J, et al. PKA modulates GSK-3beta- and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. FEBS Lett. Nov 13 2006;580(26):6269-74. doi:10.1016/j.febslet.2006.10.033
80. Ma S, Liu S, Huang Q, et al. Site-specific phosphorylation protects glycogen synthase kinase-3beta from calpain-mediated truncation of its N and C termini. J Biol Chem. Jun 29 2012;287(27):22521-32. doi:10.1074/jbc.M111.321349
81. Jin N, Yin X, Yu D, et al. Truncation and activation of GSK-3beta by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer's disease. Sci Rep. Feb 2 2015;5:8187. doi:10.1038/srep08187
82. Wang Y, Hall RA, Lee M, Kamgar-parsi A, Bi X, Baudry M. The tyrosine phosphatase PTPN13/FAP-1 links calpain-2, TBI and tau tyrosine phosphorylation. Scientific Reports. 2017;7
83. Wang Y, Brazdzionis J, Dong F, et al. P13BP, a Calpain-2-Mediated Breakdown Product of PTPN13, Is a Novel Blood Biomarker for Traumatic Brain Injury. J Neurotrauma. Nov 15 2021;38(22):3077-3085. doi:10.1089/neu.2021.0229
84. Chung DC, Carlomagno Y, Cook CN, et al. Tau exhibits unique seeding properties in globular glial tauopathy. Acta Neuropathol Commun. Mar 7 2019;7(1):36. doi:10.1186/s40478-019-0691-9
85. Cicognola C, Satir TM, Brinkmalm G, et al. Tauopathy-Associated Tau Fragment Ending at Amino Acid 224 Is Generated by Calpain-2 Cleavage. J Alzheimers Dis. 2020;74(4):1143-1156. doi:10.3233/JAD-191130
86. Reinecke JB, DeVos SL, McGrath JP, et al. Implicating calpain in tau-mediated toxicity in vivo. PLoS One. 2011;6(8):e23865. doi:10.1371/journal.pone.0023865
87. Garg S, Timm T, Mandelkow EM, Mandelkow E, Wang Y. Cleavage of Tau by calpain in Alzheimer's disease: the quest for the toxic 17 kD fragment. Neurobiol Aging. Jan 2011;32(1):1-14. doi:10.1016/j.neurobiolaging.2010.09.008
88. Afreen S, Ferreira A. The formation of small aggregates contributes to the neurotoxic effects of tau45-230. Neurochem Int. Jan 2022;152:105252. doi:10.1016/j.neuint.2021.105252
89. Croall DE, DeMartino GN. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev. Jul 1991;71(3):813-47. doi:10.1152/physrev.1991.71.3.813
90. Vanderklish PW, Bahr BA. The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. International journal of experimental pathology. 2000;81(5):323-339.
91. Huang Y, Wang KK. The calpain family and human disease. Trends Mol Med. Aug 2001;7(8):355-62. doi:10.1016/s1471-4914(01)02049-4
92. Geddes JW, Saatman KE. Targeting individual calpain isoforms for neuroprotection. Exp Neurol. Nov 2010;226(1):6-7. doi:10.1016/j.expneurol.2010.07.025
93. Wang Y, Briz V, Chishti A, Bi X, Baudry M. Distinct roles for mu-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci. Nov 27 2013;33(48):18880-92. doi:10.1523/JNEUROSCI.3293-13.2013
94. Bevers MB, Lawrence E, Maronski M, Starr N, Amesquita M, Neumar RW. Knockdown of m‐calpain increases survival of primary hippocampal neurons following NMDA excitotoxicity. Journal of neurochemistry. 2009;108(5):1237-1250.
95. Bevers MB, Neumar RW. Mechanistic role of calpains in postischemic neurodegeneration. Journal of Cerebral Blood Flow & Metabolism. 2008;28(4):655-673.
96. Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nature Reviews Neuroscience. 2010;11(10):682-696.
97. Papouin T, Oliet SH. Organization, control and function of extrasynaptic NMDA receptors. Phil Trans R Soc B. 2014;369(1654):20130601.
98. Xu J, Kurup P, Zhang Y, et al. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci. Jul 22 2009;29(29):9330-43. doi:10.1523/JNEUROSCI.2212-09.2009
99. Krapivinsky G, Krapivinsky L, Manasian Y, et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron. 2003;40(4):775-784.
100. Zadran S, Jourdi H, Rostamiani K, Qin Q, Bi X, Baudry M. Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation. The Journal of Neuroscience. 2010;30(3):1086-1095.
101. Gladding CM, Sepers MD, Xu J, et al. Calpain and STriatal-Enriched protein tyrosine phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington's disease mouse model. Human molecular genetics. 2012;21(17):3739-3752.
102. Yamashima T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Progress in neurobiology. 2000;62(3):273-295.
103. Yamashima T. Ca 2+-dependent proteases in ischemic neuronal death: a conserved ‘calpain–cathepsin cascade’from nematodes to primates. Cell calcium. 2004;36(3):285-293.
104. Yamashima T. Can ‘calpain-cathepsin hypothesis’ explain Alzheimer neuronal death? Ageing Research Reviews. 2016;32:169-179.
105. Clausen A, Xu X, Bi X, Baudry M. Effects of the superoxide dismutase/catalase mimetic EUK-207 in a mouse model of Alzheimer's disease: protection against and interruption of progression of amyloid and tau pathology and cognitive decline. Journal of Alzheimer's Disease. 2012;30(1):183-208.
106. Páramo B, Montiel T, Hernández-Espinosa DR, Rivera-Martínez M, Morán J, Massieu L. Calpain activation induced by glucose deprivation is mediated by oxidative stress and contributes to neuronal damage. The international journal of biochemistry & cell biology. 2013;45(11):2596-2604.
107. Yokoyama Y, Maruyama K, Yamamoto K, et al. The role of calpain in an in vivo model of oxidative stress-induced retinal ganglion cell damage. Biochemical and biophysical research communications. 2014;451(4):510-515.
108. Chang H, Sheng JJ, Zhang L, et al. ROS‐Induced Nuclear Translocation of Calpain‐2 Facilitates Cardiomyocyte Apoptosis in Tail‐Suspended Rats. Journal of cellular biochemistry. 2015;116(10):2258-2269.
109. Pandey M, Choudhury H, Verma RK, et al. Nanoparticles Based Intranasal Delivery of Drug to Treat Alzheimer's Disease: A Recent Update. CNS Neurol Disord Drug Targets. 2020;19(9):648-662. doi:10.2174/1871527319999200819095620
110. Fonseca LC, Lopes JA, Vieira J, et al. Intranasal drug delivery for treatment of Alzheimer's disease. Drug Deliv Transl Res. Apr 2021;11(2):411-425. doi:10.1007/s13346-021-00940-7