Radiation Oncology-Future Vision for the Modern Radiation Oncologist
Main Article Content
Abstract
Radiation oncology has evolved as a discipline and the physicians who practice radiation oncology are adapting to the changing landscape of oncology management. The skill set for the modern radiation oncologist has matured as the requirements for modern patient care have become increasingly complex both in patient evaluation and treatment execution. Radiation oncology interacts with all medical and surgical subspecialties and advanced radiation therapy treatment plans require nimble use of volumetric anatomic and metabolic image sets and applied pathology to contour targets for successful treatment. Although multidisciplinary care management can serve to confirm and validate a treatment plan among providers, the number of providers involved with an individual patient management plan can also generate confusion and mixed messaging for the patient and their family. Because radiation oncologists work with every discipline and see patients weekly on treatment, often the relationship between the radiation oncologist and the patient can serve as a bridge between disciplines and radiation oncologists can serve to align the disciplines with the patient to re-affirm the care plan, limit confusion, and generate confidence for the patient with the plan and the providers. In this article, we will review the changing role of the radiation oncologist as we continually move directly into the mainstream of patient care, in equal partnership to medical oncology with highly advanced tools for modern therapy. Survivorships models of care will mature as radiation oncologists become more integrated into primary and follow up management of each cancer patient. The article has relevance as modern radiation therapy programs will need to adjust to meet the needs of modern patient care as radiation oncologists assume more primary responsibility for the longitudinal care of the oncology patient.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109-122. doi: 10.1016/0360-3016(91)90171-y.
3. Niemierko A. A unified model of tissue response to radiation. Med Phys. 1999;26:1100.
4. Bentzen SM, Constine LS, Deasy JO, et al. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): An introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76(3S):S3-9. doi: 10.1016/j.ijrobp.2009.09.040.
5. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3S):S10-19. doi: 10.1016/j.ijrobp.2009.07.1754.
6. Mendenhall NP, Fitzgerald TJ. Conventional radiation therapy compared with stereotactic conformal therapy- A rare and laudable randomized trial. JAMA Oncol. 2017;3(10):1376-1377. doi: 10.1001/jamaoncol.2017.1552.
7. Ding Z, Zhang H, Lv XF, et al. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Hum Brain Mapp. 2018;39(1):407-427. doi: 10.1002/hbm.23852.
8. Lin J, Lv X, Niu M, et al. Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy. Neuroimage Clin. 2017;14:610-621. doi: 10.1016/j.nicl.2017.02.025.
9. Uehara K, Sasayama T, Miyawaki D, et al. Patterns of failure after multimodal treatments for high-grade glioma: Effectiveness of MIB-1 labeling index. Radiat Oncol. 2012;7:104. doi: 10.1186/1748-717X-7-104.
10. Lao J, Chen Y, Li ZC, et al. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep. 2017;7(1):10353. doi: 10.1038/s41598-017-10649-8.
11. Zhou M, Chaudhury B, Hall LO, et al. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J Magn Reson Imaging. 2017;46(1):115-123. doi: 10.1002/jmri.25497.
12. Xi YB, Guo F, Xu ZL, et al. Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. J Magn Reson Imaging. 2018;47(5):1380-1387. doi: 10.1002/jmri.25860.
13. Eckel-Passow JE, Decker PA, Kosel ML, et al. Using germline variants to estimate glioma and subtype risks. Neuro Oncol. 2019;21(4):451-461. doi: 10.1093/neuonc/noz009.
14. FitzGerald TJ. What we have learned: The impact of quality from a clinical trials perspective. Semin Radiat Oncol. 2012;22(1):18-28. doi: 10.1016/j.semradonc.2011.09.004.
15. Peters LJ, O'Sullivan B, Giralt J, et al. Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: Results from TROG 02.02. J Clin Oncol. 2010;28(18):2996-3001. doi: 10.1200/JCO.2009.27.4498.
16. Kalapurakal JA, Gopalakrishnan M, Walterhouse DO, et al. Cardiac-sparing whole lung IMRT in patients with pediatric tumors and lung metastasis: Final report of a prospective multicenter clinical trial. Int J Radiat Oncol Biol Phys. 2019;103(1):28-37. doi: 10.1016/j.ijrobp.2018.08.034.
17. Yusuf SW, Venkatesulu BP, Mahadevan LS, Krishnan S. Radiation-induced cardiovascular disease: A clinical perspective. Front Cardiovasc Med. 2017;4:66. doi: 10.3389/FCVM.2017.00066.
18. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987-998. doi: 10.1056/NEJMoa1209825.
19. Kwa SL, Lebesque JV, Theuws JC, et al. Radiation pneumonitis as a function of mean lung dose: An analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys. 1998;42(1):1-9. doi: 10.1016/s0360-3016(98)00196-5.
20. Graham MV. Predicting radiation response. Int J Radiat Oncol Biol Phys. 1997;39(3):561-562. doi: 10.1016/s0360-3016(97)00353-2.
21. Graham MV, Purdy JA, Emami B, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999;45(2):323-329. doi: 10.1016/s0360-3016(99)00183-2.
22.Hanania AN, Mainwaring W, Ghebre YT, Hanania NA, Ludwig M. Radiation-induced lung injury: Assessment and management. Chest. 2019;156(1):150-162. doi: 10.1016/j.chest.2019.03.033.
23. Käsmann L, Dietrich A, Staab-Weijnitz CA, et al. Radiation-induced lung toxicity - cellular and molecular mechanisms of pathogenesis, management, and literature review. Radiat Oncol. 2020;15(1):214. doi: 10.1186/s13014-020-01654-9.
24. Dawson LA, McGinn CJ, Normolle D, et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J Clin Oncol. 2000;18(11):2210-2218. doi: 10.1200/JCO.2000.18.11.2210.
25. Dawson LA, Ten Haken RK, Lawrence TS. Partial irradiation of the liver. Semin Radiat Oncol. 2001;11(3):240-246. doi: 10.1053/srao.2001.23485.
26. Quinn T, Bushe H, Higgins S, et al. Re-treatment of prostate cancer with radiation therapy. Med Res Arch. 2021;9(11). doi: 10.18103/mra.v9i11.2599.
27. Ding L, Sioshansi S, Malik H, et al. Yttrium-90 hepatic therapy and the increasing role of volumetric voxel-based post therapy dosimetry: A case report. Med Res Arch. 2022;10(11). doi: 10.18103/mra.v10i11.3379.
28. Baradaran-Ghahfarokhi M. Radiation-induced kidney injury. J Renal Inj Prev. 2012;1(2):49-50. doi: 10.12861/jrip.2012.17.
29. Citron ML, Berry DA, Cirrincione C, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: First report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol. 2003;21(8):1431-1439. doi: 10.1200/JCO.2003.09.081.
30. Sartor CI, Peterson BL, Woolf S, et al. Effect of addition of adjuvant Paclitaxel on radiotherapy delivery and locoregional control of node-positive breast cancer: Cancer and Leukemia Group B 9344. J Clin Oncol. 2005;23(1):30-40. doi: 10.1200/JCO.2005.12.044.
31. Giuliano AE, Ballman KV, McCall L, et al. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: The ACOSOG Z0011 (Alliance) randomized clinical trial. JAMA. 2017;318(10):918-926. doi: 10.1001/jama.2017.11470.
32. Jagsi R, Chadha M, Moni J, et al. Radiation field design in the ACOSOG Z0011 (Alliance) Trial. J Clin Oncol. 2014;32(32):3600-3606. doi: 10.1200/JCO.2014.56.5838.
33. Wang X, Wang W, Li JB, et al. Definition of internal mammary node target volume based on the position of the internal mammary sentinel lymph nodes presented on SPECT/CT fusion images. Front Oncol. 2020;9:1553. doi: 10.3389/fonc.2019.01553.
34. Reznik J, Cicchetti MG, Degaspe B, Fitzgerald TJ. Analysis of axillary coverage during tangential radiation therapy to the breast. Int J Radiat Oncol Biol Phys. 2005;61(1):163-168. Doi: 10.1016/j.ijrobp.2004.04.065.
35. Borm KJ, Voppichler J, Düsberg M, et al. FDG/PET-CT-based lymph node atlas in breast cancer patients. Int J Radiat Oncol Biol Phys. 2019;103(3):574-582. doi: 10.1016/j.ijrobp.2018.107.2025.
36. Fitzgerald TJ, Bishop-Jodoin M, Bosch WR, et al. Future vision for the quality assurance of oncology clinical trials. Front Oncol. 2013;3:31. doi: 10.3389/fonc.2013.00031.
37. FitzGerald TJ. A new model for imaging and radiation therapy quality assurance in the National Clinical Trials Network of the National Cancer Institute. Int J Radiat Oncol Biol Phys. 2014;88(2):272-273. doi: 10.1016/j.ijrobp.2013.09.030.
38. Saltz J, Sharma A, Iyer G, et al. A containerized software system for generation, management, and exploration of features from whole slide tissue images. Cancer Res. 2017;77(21):e79-82. doi: 10.1158/0008-5472.CAN-17-0316.
39. Prior F, Almeida J, Kathiravelu P, et al. Open access image repositories: High-quality data to enable machine learning research. Clin Radiol. 2020;7591):7-12. doi: 10.1016/j.crad.2019.04.002.
40. FitzGerald TJ, Bishop-Jodoin M, Laurie F, et al. Acquisition and Management of Data for Translational Science in Oncology”. In: Sundaresan S, editor. Translational Research in Cancer. London, England: IntechOpen; 2019; doi: 10.5772/intechopen.89700.
41. Followill D, Knopp M, Galvin J, et al. The Imaging and Radiation Oncology Core (IROC) Group: A proposed new clinical trial quality assurance organization. Med Phys. 2013;40(6):507. doi: 10.1118/1.4815652.
42. Fairchild A, Straube W, Laurie F, Followill D. Does quality of radiation therapy predict outcomes of multicenter cooperative group trials? A literature review. Int J Radiat Oncol Biol Phys. 2013;87(2):246-260. doi: 10.1016/j.ijrobp.2013.03.036.
43. FitzGerald TJ, Bishop-Jodoin M, Laurie F, et al. The importance of imaging in radiation oncology for National Clinical Trials Network protocols. Int J Radiat Oncol Biol Phys. 2018;102(4):775-782. doi: 10.1016/j.ijrobp.2018.08.039.
44. FitzGerald TJ, Rosen MA, Bishop-Jodoin M. The influence of imaging in the modern practice of radiation oncology. Int J Radiat Oncol Biol Phys. 2018;102(4):680-682. doi: 10.1016/j.ijrobp.2018.08.028.