Prospects for developing lipoprotein-based drug transporters for therapeutic applications.

Main Article Content

Andras G. Lacko Nirupama A. Sabnis Dorota Stankowska Akpedje Serena Dossou Rong Ma Ronald Petty Rob Dickerman Bruce A. Bunnell

Abstract

The primary focus of this review is lipoprotein-based drug carriers, more specifically, high-density lipoprotein (HDL) type nanoparticles (NPs). These nanostructures are discussed regarding their suitability for clinical applications, particularly cancer therapy. Poor solubility and insufficient capability to selectively target malignant tumors represent significant challenges facing many anticancer drugs. Nevertheless, we and others have found that most, if not all, of these difficulties, can be overcome by incorporating drugs into lipoprotein nanocarriers (1). While not a novel approach, as HDL type NPs have been documented to deliver anticancer agents to cancer cells effectively and tumors (2-5), including those that, on their own (without facilitation), exhibited less than desirable therapeutic efficacy (6), due to their desirable features (see below), HDL type drug carriers, at least in our view, hold tremendous promise as facilitators of cancer chemotherapy. One of the key aspects of the HDL-type NP-facilitated drug transport is the receptor-mediated uptake of the payload from the NPs (7,8). Consequently, in this review, major emphasis is placed on monitoring the expression of the scavenger receptor type B1 (SR-B1) as a potentially valuable tool for the pre-treatment selection of patients regarding their suitability for advanced, personalized chemotherapy. The main emphasis in this article is on developing novel cancer therapeutics, while approaches for treating other diseases via lipoprotein nanocarriers are briefly discussed.

Keywords: Developing Lipoprotein-based Drug, Prospects for Developing Lipoprotein-based Drug, Therapeutic Applications, Drug Transporters for Therapeutic Applications, Prospects for Developing Lipoprotein-based Drug Transporters for Therapeutic Applications

Article Details

How to Cite
LACKO, Andras G. et al. Prospects for developing lipoprotein-based drug transporters for therapeutic applications.. Medical Research Archives, [S.l.], v. 11, n. 1, jan. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3521>. Date accessed: 15 jan. 2025. doi: https://doi.org/10.18103/mra.v11i1.3521.
Section
Research Articles

References

1. Lacko AG, Nair, M, L. Prokai, McConathy WJ. Prospects and challenges of the development of lipoprotein-based drug formulations for anti-cancer drugs. Expert Opinion on Drug Delivery 2007; 4:665-675.
2. Busatto S, Walker SM, Grayson W, Pham A, Tian M, Nesto N, Barklund J, Wolfram J. Lipoprotein-based drug delivery. Adv Drug Deliv Rev. 2020;159:377-390.
3. Chaudhary J. Bower J, Corbin IR. Lipoprotein Drug Delivery Vehicles for Cancer: Rationale and Reason. Int J Mol Sci. 2019; 20(24):6327.
4. Shahzad MM, Mangala LS, Ha D, Lu C, Bottsford-Miller J, Nishimura M, Mora NM, Lee J-W, Stone RL, Peco CV, Thanapprapasr D, Roh J-W, Gaur P, Nair MP, Par Y-Y, Sabnis N, Deavers MT, Lee J-S, Ellis LM, Lopez-Berestein G, McConathy WJ, Prokai L, Lacko AG, Sood AK. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia. 2011;13(4):309-19.
5. Sabnis N, Lacko AG. Drug delivery via lipoprotein-based carriers: answering the challenges in systemic therapeutics. Ther. Deliv. 2012; 3(5):599-608.
6. Sabnis N, Nair M, Israel M, McConathy WJ, Lacko AG. Enhanced solubility and functionality of valrubicin (AD-32) against cancer cells upon encapsulation into biocompatible nanoparticles. Int J Nanomedicine. 2012; 7:975-83.
7. Mooberry LK, Sabnis NA, Panchoo M, Nagarajan B, Lacko AG. Targeting the SR-B1 receptor as a Gateway for Cancer Therapy and Imaging. Front Pharmacol. 2016; 7: 466.
8. Pandey M, Cuddihy G, Gordon JA, Cox ME, Wasan KM. Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer. Pharmaceutics. 2021;13(9):1509.
9. Gal D Ohashi M, MacDonald PC, Buchsbaum HJ, Simpson ER. Low-density lipoprotein as a potential vehicle for chemotherapeutic agents and radionucleotides in the management of gynecologic neoplasms. Am. J. Obstet. Gynecol. 1981; 139(8), 877-885.
10. Counsell RE, Pohlad RC. Lipoproteins as potential site-specific delivery systems for diagnostic and therapeutic agents. J Med Chem. 1982; 25(10):1115-20.
11. Firestone RA, Pisano JM, Falck JR, McPhaul MM, Krieger M. Selective delivery of cytotoxic compounds to cells by the LDL pathway. J Med Chem. 1984; 27(8):1037-43.
12. Kader A, Pater A. Loading anticancer drugs into HDL as well as LDL has little effect on properties of complexes and enhances (their) cytotoxicity to human carcinoma cells. J. Control Release. 2002; 80(1-3):29-44.
13. Versluis AJ, Rensen PC, Rump ET, Van Berkel TJ, Bijsterbosch MK. Low-density lipoprotein receptor-mediated delivery of a lipophilic daunorubicin derivative to B16 tumours in mice using apolipoprotein E-enriched liposomes. Br J Cancer. 1998; 78(12):1607-14.
14. de Smidt PC, Versluis AJ, van Berkel TJ. Transport of sulfonated tetraphenylporphine by lipoproteins in the hamster. Pharmacol. 1992; 23;43(12):2567-73.
15. Rensen PC, de Vrueh RL, Kuiper J, Bijsterbosch MK, Biessen EA, van Berkel TJ. Recombinant lipoproteins: lipoprotein-like lipid particles for drug targeting. Adv Drug Deliv Rev. 2001; 47(2-3):251-76.
16. Schouten D, van der Kooij M, Muller J, Pieters MN, Bijsterbosch MK, van Berkel TJ.l; Development of lipoprotein-like lipid particles for drug targeting: neo-high density lipoproteins. Mol Pharmacol. 1993; 44(2):486-92.
17. McConathy WJ, Nair M, Paranjape S, Mooberry L, Lacko AG. Evaluation of synthetic/reconstituted high density lipoproteins (rHDL) as delivery vehicles for paclitaxel. Anti-Cancer Drugs. 2008;19(2):183-8.
18. Sabnis N, Pratap S, Akopova I, Bowman WP, Lacko AG. Pre-Clinical Evaluation of rHDL Encapsulated Retinoids for the Treatment of Neuroblastoma. Front Pediat 2013;1:6.
19. Chen X, Mangala LS, Mooberry L, Bayraktar E, Dasari SK, Ma S, Ivan C, Court KA, Rodriguez-Aguayo C, Bayraktar R, Raut S, Sabnis N, Kong X, Yang X, Lopez-Berestein G, Lacko AG, Sood AK. Identifying and targeting angiogenesis-related microRNAs in ovarian cancer. Oncogene, 2019;38(33):6095-6108.
20. Fazal S, Miyako E, Matsumura K, Rajan R. Avengers against cancer: A new era of nano-biomaterial-based therapeutics MaterialsToday 2021. 51:317–349.
21. Ranganathan R, Madanmohan S, Kesavan A, Baskar G, Krishnamoorthy YR, Santosham R, Ponraju D, Rayala SK, Venkatraman G. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. International Journal of Nanomedicine. 2012; 7:1043-60.
22. Mooberry LK, Nair M, Paranjape S, McConathy WJ, Lacko AG. Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier. J Drug Target. 2010; 18(1):53-8.
23. Kootte RS, Smits LP, van der Valk FM, Dasseux JL, Keyserling CH, Barbaras R, Paolini JF, Santos RD, van Dijk TH, Dallinga-van Thie GM, Nederveen AJ, Mulder WM, Hovingh GK, Kastelein JP, Groen AK, Stroes E. Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA. J Lipid Res. 2015; 56(3):703-712.
24. Wolkowic P, White CR, Anantharamaiah GM. Apolipoprotein Mimetic Peptides: An Emerging Therapy against Diabetic Inflammation and Dyslipidemia. Biomolecules; 2021 23;11(5):627.
25. Kalayci A, Gibson CM, Ridker PM, Wright SD, Kingwell BA, Korjian S, Chi G, Lee JJ, Tricoci P, Kazmi SH, Fitzgerald C, Shaunik A, Berman G, Duffy D, Libby P. ApoA‑I Infusion Therapies Following Acute Coronary Syndrome: Past, Present, and Future. Current Atherosclerosis Reports. 2022; 24:585–597.
26. Raut S, Garud A, Nagarajan B, Sabnis N, Remaley A, Fudala R, Gryczynski I, Gryczynski Z, Dzyuba SV, Borejdo J, Lacko A. Probing the Assembly of HDL Mimetic, Drug Carrying Nanoparticles Using Intrinsic Fluorescence. J Pharmacol Exp Ther. 2020; 373(1):113-121.
27. Heinrich SE, Hong BJ, Rink JS, Nguyen ST, Thaxton CS. Supramolecular Assembly of High-Density Lipoprotein Mimetic Nanoparticles Using Lipid-Conjugated Core Scaffolds. J Am Chem Soc. 2019; 141(25): 9753-9757.
28. Kuai R, Li D, Chen YE, Moon JJ, Schwendeman A. High-Density Lipoproteins: Nature's Multifunctional Nanoparticles. ACS Nano. 2016;10(3):3015-41.
29. Beyerle A, Greene B, Dietrich B, Kingwell BA, Panjwani P, Wright SD, Herzog E. Co-administration of CSL112 (apolipoprotein A-I [human]) with atorvastatin and alirocumab is not associated with increased hepatotoxic or toxicokinetic effects in rats. Toxicol Appl Pharmacol. 2021; 422:115557.
30. Sabnis N, Lacko, AG, Fudala R. NOVEL HDL MIMICKING TARGETED DRUG DELIVERY SYSTEM FOR THE TREATMENT OF SOLID TUMORS. U.S. Provisional Patent Application. UNTX.P0012US.P1.
31. Kasinath BS. Diabetic nephropathy: challenges remain. NephSAP 11: 303-307, 2012.
32. US Renal Data System. USRDS 2011 Annual Data Report: Atlas of chronic kidney disease and end-stage renal disease in the United States. National Institutes of Health, national Institute of Diabetes and Digestive and kidney Diseases Bethesda: MD, 2011.
33. Moreira RS, Irigoyen M, Sanches TR, Volpini RA, Camara NOS, Malheiros DM, Shimizu MHM, Seguro AC, Andrade L. Apolipoprotein A-I mimetic peptide 4F attenuates kidney injury, heart injury, and endothelial dysfunction in sepsis. Am J Physiol Regul Integr Comp Physiol 2014; 307: R514-R524.
34. Kronenberg F. HDL in CKD-the devil is in the detail J Am Soc Nephrol 2018; 29: 1356-1371.
35. Karalis I, Jukema JW. HDL mimetics infusion and regression of atherosclerosis: is it still considered a valid therapeutic option? Curr Cardiol Rep 2018; 20: 66.
36. Ossoli A, Strazzlla A, Rottoli D, Zanchi C, Locatelli M, Zoja C, Simonelli S, Veglia F, Barbaras R, Tupin C, Dasseux JL, Calabresi L. CER-001 ameliorates lipid profile and kidney disease in a mouse model of Familial LCAT deficiency. Metabolism 2021;116:154464.
37. Brosius FC, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, Harris RC, Kakoki M, Kretzler M, Leiter E, Levi M, Mclndoe RA, Sharma K, Smithies O, Susztak K, Takahashi N and Takahashi T.. Mouse models of diabetic nephropathy. J Am Soc Nephrol 2009; 20: 2503-2512.
38. Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, Fogo AB, Breyer MD and Harris RC.. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol 2006; 17, 2664-2669.
39. Ma Y, Li W, Yazdizadeh Shotorbani P, Dubansky BH, Huang L, Chaudhari S, Wu P, Wang LA, Ryou MG, Zhou Z and Ma R. Comparison of diabetic nephropathy between male and female eNOS-/-db/db mice. Am J Physiol Renal Physiol. 2019; 316: F889-F897.
40. Dang, H, Dong C, Zhang L. Sustained latanoprost release from PEGylated solid lipid nanoparticle-laden soft contact lens to treat glaucoma. Pharm Dev Tech, 2022. 27: p. 127-133.
41. Duncan, KG, Hosseini K, Bailey KR, Yang H, Lowe RJ, Matthes MT, Kane JP, LaVail MM, Schwartz DM, Duncan JL. Expression of reverse cholesterol transport proteins ATP-binding cassette A1 (ABCA1) and scavenger receptor BI (SR-BI) in the retina and retinal pigment epithelium. Br J Ophthalmol., 2009; 93: 1116-1120.
42. Duncan, KG, Bailey KR, Kane JP, Schwartz DM. Human retinal pigment epithelial cells express scavenger receptors BI and BII. Biochem Biophys Res Comm, 2002. 292:1017-1022.
43. Tserentsoodol, N, Gordiyenko NV, Pascual I, Lee JW, Fliesler SJ, Rodriguez IR. Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Mol Vis, 2006. 12:3193-3133.
44. Lavker, RM, Kaplan N, McMahon KM, Calvert AE, Henrich SE, Onay UV, Lu KQ, Peng H, Thaxton CS. Synthetic high-density lipoprotein nanoparticles: Good things in small packages. The Ocul Surf, 2021. 21:19-26.
45. Lambuk, L, Suhaimi NAA, Sadikan MZ, Jafri AJA, Ahmad S, Nasir NAA, Uskoković V, Kadir R, Mohamud R. Nanoparticles for the treatment of glaucoma-associated neur-oinflammation. Eye and Vision, 2022. 9:1-29.
46. Tran‐Dinh, A Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Lapergue B, Burillo E, Michel JB, Levoye A, Martin-Ventura JL, Meilhac O. HDL and endothelial protection. Br. Journal Pharmacol, 2013. 169:493.
47. Su, L-J, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative medicine and cellular longevity, 2019.
48. Kelly UL, Grigsby D, Cady MA, Landowski M, Skiba NP, Liu J, Remaley AT, Klingeborn M, Bowes Rickman C. High-density lipoproteins are a potential therapeutic target for age-related macular degeneration. J Biol Chem, 2020. 295: 13601-13616.
49. Suda, K, Murakami T, Gotoh N, Fukuda R, Hashida Y, Hashida M, Tsujikawa A, Yoshimura N. High-density lipoprotein mutant eye drops for the treatment of posterior eye diseases. J Contr Rel. 2017, 266:301-309.
50. Gracia G, Cao E, Feeney OM, Johnston APR, Porter CJH, Trevaskis NL.High-Density Lipoprotein Composition Influences Lymphatic Transport after Subcutaneous Administration. Mol Pharm. 2020; 17:2938-2951.
51. Holmgren J, Lönnroth I, Svennerholm L.Tissue Receptor for Cholera Exotoxin: Postulated Structure from Studies with GM1 Ganglioside and Related Glycolipids. Infect. Immun. 1973, 8: 208-214.
52. Markwell, M, Svennerholm L, Paulson JC. Specific Gangliosides Function as Host Cell Receptors for Sendai Virus. Proc. Natl. Acad. Sci. 1981, 78, 5406–5410.
53. Superti, F, Hauttecoeur B, Morelec MJ, Goldoni P, Bizzini B, Tsiang H. Involvement of Gangliosides in Rabies Virus Infection. J. Gen. Virol. 1986, 67:47–56.
54. Suzuki, Y, Human influenza A virus hemagglutinin distinguishes sialyloligosaccharides in membrane-associated gangliosides as its receptor which mediates the adsorption and fusion processes of virus infection. Specificity for oligosaccharides and sialic acids and the sequence to which sialic acid is attached. J. Biol. Chem. 1986, 261, 17057–17061.
55. Harouse, J, Bhat S, Spitalnik SL, Laughlin M, Stefano K, Silberberg DH, Gonzalez-Scarano F. Inhibition of Entry of HIV-1 in Neural Cell Lines by Antibodies against Galactosyl Ceramide. Science 1991, 253:320–323.
56. Rolsma, M.; Kuhlenschmidt, T.; Gelberg, H.; Kuhlenschmidt, M. Structure and Function of a Ganglioside Receptor for Porcine Rotavirus. J. Virol. 1998, 72:9079–9091.
57. Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA. Gangliosides Are Receptors for Murine Polyoma Virus and SV40. EMBO J. 2003, 22, 4346–4355.
58. Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C. 2004. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J. Lipid Res. 45:1169–1196.
59. Beutler B, Hoebe K, Du X, Ulevitch RJ. 2003. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukoc. Biol. 74:479–485.
60. Casas AT, Hubsch AP, Doran JE. Effects of reconstituted high-density lipoprotein in persistent gram-negative bacteremia. Am Surg. 1996; 62(5):350-5.
61. Pajkrt D, Doran JE, Koster F, Lerch PG, Arnet B, van der Poll T, ten Cate JW, van Deventer SJ. Anti-inflammatory Effects of Reconstituted High-Density Lipoprotein During Human Endotoxemia. J. Exp. Med. 1996, 184:1601–1608.