Cholesterol-Dependent Cellular Processes and Peptides Containing Cholesterol-Binding Motifs: Possible Implications for Medicine

Main Article Content

Antonina Dunina-Barkovskaya

Abstract

The animal cell is a unique system in which the functioning of its constituent molecules is interdependent and coordinated, and the violation of this coordination is fatal for the cell. One example of this coordination and mutual regulation is the functioning of membrane proteins, whose activity depends on their interaction with membrane lipids. This review reminds us of the crucial importance of the lipid component of cell membranes for normal cell function, and in particular looks at the role of the "cholesterol" component. Given a given genome and a corresponding set of proteins, this lipid component provides a wide range of regulation of cellular functions. The review exemplifies cholesterol-dependent membrane proteins and cellular processes and considers their role in microbial infections and some other pathologies. The concept of cholesterol-recognizing/interacting amino acid consensus (CRAC) motifs in proteins as a possible mechanism of these protein–lipid interactions is discussed. Examples of the use of peptides containing such motifs to modulate cholesterol-dependent processes are presented. In summary, consideration of the cholesterol component in disease pathogenesis and understanding the mechanisms of cholesterol–protein interactions represent a significant resource for the development of drugs that affect the protein–lipid interface. Such drugs may include cholesterol-binding peptides that target specific cholesterol-dependent proteins.

Keywords: cholesterol, cholesterol-dependent proteins, cholesterol-recognizing/interaction amino-acid consensus (CRAC), CRAC motifs, peptides

Article Details

How to Cite
DUNINA-BARKOVSKAYA, Antonina. Cholesterol-Dependent Cellular Processes and Peptides Containing Cholesterol-Binding Motifs: Possible Implications for Medicine. Medical Research Archives, [S.l.], v. 11, n. 1, jan. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3532>. Date accessed: 15 jan. 2025. doi: https://doi.org/10.18103/mra.v11i1.3532.
Section
Review Articles

References

1. Grouleff J, Irudayam SJ, Skeby KK, Schiøtt B. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta (BBA) – Biomembranes. 2015;1848(9):1783-1795. https://doi.org/10.1016/j.bbamem.2015.03.029
2. Corradi V, Mendez-Villuendas E, Ingólfsson HI, Gu RX, Siuda I, Melo MN, Moussatova A, DeGagné LJ, Sejdiu BI, Singh G, Wassenaar TA, Delgado Magnero K, Marrink SJ, Tieleman DP. Lipid-protein interactions are unique fingerprints for membrane proteins. ACS Cent Sci. 2018;4(6):709-717. doi: 10.1021/acscentsci.8b00143
3. Pichler H, Emmerstorfer-Augustin A. Modification of membrane lipid compositions in single-celled organisms – From basics to applications. Methods. 2018;147:50-65, ISSN 1046-2023. https://doi.org/10.1016/j.ymeth.2018.06.009
4. Mukherjee S, Zha X, Tabas I, Maxfield FR. Cholesterol distribution in living cells: Fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J. 1998;75:1915-1925. doi: 10.1016/S0006-3495(98)77632-5
5. Song Y, Kenworthy AK, Sanders CR. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Science. 2014;23:1-22. doi: 10.1002/pro.2385
6. Maxfield FR, van Meer G, 2010- Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol. 2010;22(4):422-429. doi: 10.1016/j.ceb.2010.05.004.
7. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.
8. Coskun U, Simons K. Cell membranes: The lipid perspective. Structure. 2011;19(11):1543-1548. doi: 10.1016/j.str.2011.10.010
9. Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: Composition, regulation, and roles of lipid rafts. Nat Rev Mol Cell Biol. 2017;18:361-374.
10. Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of lipid-protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation. Chem Rev. 2019;19:6086-6161. https://doi.org/10.1021/acs.chemrev.8b00608
11. Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance. Chem Rev. 2019;119:5607-5774. doi 10.1021/acs.chemrev.8b00538refs
12. Bogdanov M, Dowhan W. Functional roles of lipids in biological membranes. In: Ridgway ND., McLeod RS, eds. Biochemistry of Lipids, Lipoproteins and Membranes, 7th Edition. Elsevier; 2021:1-51. ISBN 9780128240489. https://doi.org/10.1016/B978-0-12-824048-9.00020-1
13. Hille B, Dickson EJ, Kruse M, Vivas O, Suh B-Ch. Phosphoinositides regulate ion channels. Biochim Biophys Acta (BBA) - Molecular and Cell Biology of Lipids. 2015;1851(6):844-856. ISSN 1388-1981, https://doi.org/10.1016/j.bbalip.2014.
14. Kelly RA, O'Hara DS, Mitch WE, Smith TW. Identification of NaK-ATPase inhibitors in human plasma as nonesterified fatty acids and lysophospholipids. J Biol Chem. 1986;261(25):11704-11711.
15. Erion DM, Shulman GI. Diacylglycerol-mediated insulin resistance. Nat Med. 2010;16(4):400-402. doi: 10.1038/nm0410-400
16. Claret M, Garay R, Giraud F. The effect of membrane cholesterol on the sodium pump in red blood cells. J Physiol. 1978;274:247-263. doi: 10.1113/jphysiol.1978.sp012145
17. Yoda S, Yoda A. Phosphorylated intermediates of Na,K-ATPase proteoliposomes controlled by bilayer cholesterol. Interaction with cardiac steroid. J Biol Chem. 1987;262(1):103-109.
18. Hossain KR, Clarke RJ. General and specific interactions of the phospholipid bilayer with P-type ATPases. Biophys Rev. 2019;11(3):353-364. doi: 10.1007/s12551-019-00533-2
19. Garcia A, Lev B, Hossain KR, Gorman A, Diaz D, Pham THN, Cornelius F, Allen TW, Clarke RJ. Cholesterol depletion inhibits Na+,K+-ATPase activity in a near-native membrane environment. J Biol Chem. 2019;294(15):5956-5969. doi: 10.1074/jbc.RA118.006223
20. Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V. Cholesterol and ion channels. Subcell. Biochem. 2010;51:509-549. doi: 10.1007/978-90-481-8622-8_19
21. Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem. 2017;292(15):6135-6147. doi: 10.1074/jbc.M116.753350
22. Poveda JA, Giudici AM, Renart ML, Molina ML, Montoya E, Fernández-Carvajal A, Fernández-Ballester G, Encinar JA, González-Ros JM. Lipid modulation of ion channels through specific binding sites. Biochim Biophys Acta. 2014;1838(6):1560-1567. doi: 10.1016/j.bbamem.2013.10.023
23. Zwijsen RM, Oudenhoven IM, de Haan LH. Effects of cholesterol and oxysterols on gap junctional communication between human smooth muscle cells. Eur J Pharmacol. 1992;228(2-3):115-120. doi: 10.1016/0926-6917(92)90020-d
24. Verrecchia F, Sarrouilhe D, Hervé JC. Nongenomic steroid action: Inhibiting effects on cell-to-cell communication between rat ventricular myocytes. Exp Clin Cardiol. 2001;6(3):124-131.
25. Dunina-Barkovskaya AY. Are gap junctions lipid–protein rafts? Biologicheskie Membrany (Rus.). 2005;22(1):27-33.
26. Cibelli A, Scemes E, Spray DC. Activity and stability of Panx1 channels in astrocytes and neuroblastoma cells are enhanced by cholesterol depletion. Cells. 2022;11:3219. https://doi.org/10.3390/cells11203219
27. Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev. 2011;63(3):641–683. doi: 10.1124/pr.110.003129.5
28. Murrell-Lagnado RD. Regulation of P2X purinergic receptor signaling by cholesterol. Curr Top Membr. 2017;80:211-232. doi: 10.1016/bs.ctm.2017.05.004
29. Bennett PJ, Simmonds MA. The influence of membrane cholesterol on the GABAA receptor. Br J Pharmacol. 1996;117(1):87-92. doi: 10.1111/j.1476-5381.1996.tb15158.x
30. Hénin J, Salari R, Murlidaran S, Brannigan G. A predicted binding site for cholesterol on the GABAA receptor. Biophys J. 2014;106(9):1938-1949. doi: 10.1016/j.bpj.2014.03.024
31. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 2007;318(5854):1258-1265. doi: 10.1126/science.1150577
32. Kiriakidi S, Kolocouris A, Liapakis G, Ikram S, Durdagi S, Mavromoustakos T. Effects of cholesterol on GPCR function: Insights from computational and experimental studies. In: Rosenhouse-Dantsker A, Bukiya AN, eds. Direct Mechanisms in Cholesterol Modulation of Protein Function, Advances in Experimental Medicine and Biology. Springer Nature Switzerland AG; 2019:1135. https://doi.org/10.1007/978-3-030-14265-0_5
33. Genheden G, Essex JW, Lee AG. G protein coupled receptor interactions with cholesterol deep in the membrane. Biochim Biophys Acta. 2017;1859:268–81.
34. Roopali S, Chattopadhyay A. Membrane cholesterol stabilizes the human serotonin1A receptor. Biochim Biophys Acta. 2012:2936–2942.
35. Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A. Structure, dynamics and lipid interactions of serotonin receptors: Excitements and challenges. Biophys Rev. 2020;13(1):101–122. doi: 10.1007/s12551-020-00772-8
36. Santiago J, Guzmàn GR, Rojas LV, Marti R, Asmar-Rovira GA, Santana LF, et al. Probing the effects of membrane cholesterol in the torpedo californica acetylcholine receptor and the novel lipid-exposed mutation alpha C418W in Xenopus oocytes. J Biol Chem. 2001;276:46523–46532. doi: 10.1074/jbc.M104563200
37. Vallés AS, Barrantes FJ. Dysregulation of neuronal nicotinic acetylcholine receptor-cholesterol crosstalk in autism spectrum disorder. Front Mol Neurosci. 2021;14:744597. doi: 10.3389/fnmol.2021.744597
38. Borroni V, Baier CJ, Lang T, Bonini I, White MM, Garbus I, Barrantes FJ. Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane. Mol Membr Biol. 2007;24(1):1-15. doi: 10.1080/09687860600903387
39. Antonini A, Caioli S, Saba L, Vindigni G, Biocca S, Canu N, Zona C. Membrane cholesterol depletion in cortical neurons highlights altered NMDA receptor functionality in a mouse model of amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis. 2018;1864(2):509-519. doi: 10.1016/j.bbadis.2017.11.008
40. Yao L, Wells M, Wu X, Xu Y, Zhang L, Xiong W. Membrane cholesterol dependence of cannabinoid modulation of glycine receptor. FASEB J. 2020;34(8):10920-10930. doi: 10.1096/fj.201903093R
41. Kwiatkowska K, Frey J, Sobota A. Phosphorylation of FcγRIIA is required for the receptor-induced actin rearrangement and capping: The role of membrane rafts. J Cell Sci. 2003;116:989-998.
42. Febbraio M, Hajjar DP, Silverstein RL. CD36: A class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. 2001;108:785-791. doi:10.1172/JCI200114006.
43. Han J, Hajjar DP, Tauras JM, Nicholson AC. Cellular cholesterol regulates expression of the macrophage type B scavenger receptor, CD36. J Lipid Res. 1999;40:830-838.
44. McGilvray ID, Serghides L, Kapus A, Rotstein OD, Kain KC. Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: A role for CD36 in malarial clearance. Blood. 2000;96:3231-3240.
45. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431-438. doi: 10.1161/ATVBAHA.108.179564
46. Oh H, Mohler ER III, Tian A, Baumgart T, Diamond SL. Membrane cholesterol is a biomechanical regulator of neutrophil adhesion. Arterioscler Thromb Vasc Biol. 2009;29:1290-1297.
47. Sitrin RG, Sassanella TM, Landers JJ, Petty HR. Migrating human neutrophils exhibit dynamic spatiotemporal variation in membrane lipid organization. Amer J Respir Cell Mol Biol. 2010;43:498-506.
48. Lajoie P, Nabi IR. Regulation of raft-dependent endocytosis. J Cell Mol Med. 2007;11(4):644–653.
49. Cho YY, Kwon OH, Chung S. Preferred endocytosis of amyloid precursor protein from cholesterol-enriched lipid raft microdomains. Molecules. 2020;25(23):5490. doi: 10.3390/molecules25235490
50. Stuart AE, Davidson AE. The effect of intravenous cholesterol oleate on the phagocytic function of the reticulo-endothelial system. Br J Exp Pathol. 1963;44:24-30.
51. Bryan AM, Farnoud AM, Mor V, Del Poeta M. Macrophage cholesterol depletion and its effect on the phagocytosis of Cryptococcus neoformans. J Vis Exp. 2014;(94):52432. doi: 10.3791/52432
52. Baranova IN, Kurlander R, Bocharov AV, Vishnyakova TG, Chen Z, Remaley AT, Csako G, Patterson AP, Eggerman TL, Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. J Immunol. 2008;181:7147-7156.
53. Thiele C, Hannah MJ, Fahrenholz F, Huttner WB. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nature Cell Biol. 2000;2:42-49. doi: 10.1038/71366
54. Viswanathan G, Jafurulla M, Kumar GA, Raghunand TR, Chattopadhyay A. Dissecting the membrane cholesterol requirement for mycobacterial entry into host cells. Chem Physics Lipids. 2015;189:19-27.
55. Ouellet H, Johnston JB, Ortiz de Montellano PR. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol. 2011;19(11):530-539.
56. Gatfield J, Pieters J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science. 2000;288:1647-1650.
57. Lafont F, van der Goot FG. Bacterial invasion via lipid rafts. Cellular Microbiol. 2005;7(5):613-620. doi 10.1111/j.1462-5822.2005.00515.x
58. Dou X, Li Y, Han J, Zarlenga DS, Zhu W, Ren X, Dong N, Li X, Li G. Cholesterol of lipid rafts is a key determinant for entry and post-entry control of porcine rotavirus infection. BMC Vet Res. 2018;14(1):45. doi: 10.1186/s12917-018-1366-7
59. Carter GC, Bernstone L, Sangani D, Bee JW, Harder T, James W. HIV entry in macrophages is dependent on intact lipid rafts. Virology. 2009;386:192-202.
60. Li G-M, Li Y-G, Yamate M, Li S-M, Ikuta K. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microbes Infection. 2007;9:96-102. doi: 10.1016/j.micinf.2006.10.015
61. Glende J, Schwegmann-Wessels C, Al-Falah M, Pfefferle S, Qu X, Deng H, Drosten C, Naim HY, Herrler G. Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2. Virology. 2008;381(2):215-221. doi: 10.1016/j.virol.2008.08.026
62. Lee W, Ahn JH, Park HH, Kim HN, Kim H, Yoo Y, Shin H, Hong KS, Jang JG, Park CG, Choi EY, Bae J, Seo Y. COVID-19-activated SREBP2 disturbs cholesterol biosynthesis and leads to cytokine storm. Signal Transduct Target Ther. 2020;5. doi: 10.1038/s41392-020-00292-7
63. Li H, Papadopoulos V. Peripheral–type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991-4997. doi: 10.1016/s0039-128x(96)00154-7
64. Krueger KE, Papadopoulos V. Peripheral-type benzodiazepine receptors mediate translocation of cholesterol from outer to inner mitochondrial membranes in adrenocortical cells. J Biol Chem. 1990;265(25):15015-15022.
65. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann PL, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M. Translocator protein (18kDa): New nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27:402-409.
66. Jamin N, Neumann JM, Ostuni MA, Vu TK, Yao ZX, Murail S, Robert JC, Giatzakis C, Papadopoulos V, Lacapère JJ. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol Endocrinol. 2005;19(3):588-594. doi: 10.1210/me.2004-0308
67. Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol. 2013;4:31. doi: 10.3389/fphys.2013.00031
68. Listowski MA, Leluk J, Kraszewski S, Sikorski AF. Cholesterol interaction with the MAGUK protein family member, MPP1, via CRAC and CRAC-like motifs: An in silico docking analysis. PLoS One. 2015;10(7):e0133141. doi:10.1371/journal. Pone.0133141
69. Fantini J, Epand RM, Barrantes FJ. Cholesterol-recognition motifs in membrane proteins. In: Direct mechanisms in cholesterol modulation of protein function. Eds Rosenhouse-Dantsker A, Bukiya AN. Series Advances in Experimental Medicine and Biology. Cham: Springer. 2019; 1135:3-25. doi: 10.1007/978-3-030-14265-0_1
70. Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM. Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+ (BK) channels. J Biol Chem. 2012 Jun 8;287(24):20509-21. doi: 10.1074/jbc.M112.356261
71. Rosenhouse-Dantsker A. Cholesterol binding sites in inwardly rectifying potassium channels. Adv Exp Med Biol. 2019;1135:119-138. doi: 10.1007/978-3-030-14265-0_7
72. Baier CJ, Fantini J, Barrantes FJ. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep. 2011;1:69. doi: 10.1038/srep00069
73. Fantini J, Di Scala C, Evans LS, Williamson PT, Barrantes FJ. A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes. Sci Rep. 2016;6:21907. doi: 10.1038/srep21907
74. Pacheco J, Dominguez L, Bohórquez-Hernández A, Asanov A, Vaca L. A cholesterol-binding domain in STIM1 modulates STIM1-Orai1 physical and functional interactions. Sci Rep. 2016;6:29634. doi: 10.1038/srep29634
75. Tiffner A, Derler I. Molecular choreography and structure of Ca2+ release-activated Ca2+ (CRAC) and KCa2+ channels and their relevance in disease with special focus on cancer. Membranes (Basel). 2020;10(12):425. doi: 10.3390/membranes10120425
76. Li H, Yao Z, Degenhardt B, Teper, G, Papadopoulos V. Cholesterol binding at the cholesterol recognition/interaction amino acid consensus (CRAC) of the peripheral–type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT–CRAC peptide. Proc Natl Acad Sci USA. 2001;98:1267-1272. DOI: 10.1073/pnas.031461598
77. Cheng G, Montero A, Gastaminza P, Whitten-Bauer C, Wieland SF, Isogawa M, Fredericksen B, Selvarajah S, Gallay PA, Ghadiri MR, Chisari FV. A virocidal amphipathic α-helical peptide that inhibits hepatitis C virus infection in vitro. Proc Natl Acad Sci USA. 2008;105:3088-3093. doi: 10.1073/pnas.07123801051
78. Gallay PA, Chatterji U, Kirchhoff A, Gandarilla A, Pyles RB, Baum MM, Moss JA. Protection efficacy of C5A against vaginal and rectal HIV challenges in humanized mice. Open Virol J. 2018;12:1-13. doi: 10.2174/1874357901812010001
79. Tsfasman T, Kost V, Markushin S, Lotte V, Koptiaeva I, Bogacheva E, Baratova L, Radyukhin V. Amphipathic alpha–helices and putative cholesterol binding domains of the influenza virus matrix M1 protein are crucial for virion structure organization. Virus Res. 2015;210:114-118. doi: 10.1016/j.virusres.2015.07.017
80. Radyukhin VA, Dadinova LA, Orlov IA, Baratova LA. Amphipathic secondary structure elements and putative cholesterol recognizing amino acid consensus (CRAC) motifs as governing factors of highly specific matrix protein interactions with raft-type membranes in enveloped viruses. J Biomol Str Dynam. 2018;36:1351-1359. doi: 10.1080/07391102.2017.1323012
81. Dunina-Barkovskaya AY, Vishnyakova KS, Baratova LA, Radyukhin VA. Modulation of cholesterol-dependent activity of macrophages IC-21 by a peptide containing two CRAC-motifs from protein M1 of influenza virus. Biochemistry (Moscow), Suppl. Series A: Membr. Cell Biology. 2019;13(3):268-276. doi: https://doi.org/10.1134/S1990747819030139
82. Dunina-Barkovskaya AY, Vishnyakova KS. Modulation of the cholesterol-dependent activity of macrophages IC-21 by CRAC peptides with substituted motif-forming amino acids. Biochemistry (Moscow), Suppl. Series A: Membr. Cell Biology. 2020;14(4):331-343. doi: https://doi.org/10.1134/S1990747820040054
83. Abu-Farha M, Thanaraj TA, Qaddoumi MG, Hashem A, Abubaker J, Al-Mulla ad Fahd.The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int J Mol Sci. 2020;21:3544. doi: 10.3390/ijms21103544 www.mdpi
84. Sviridov D, Mukhamedova N, Makarov AA, Adzhubei A, Bukrinsky M. Comorbidities of HIV infection: Role of Nef-induced impairment of cholesterol metabolism and lipid raft functionality. AIDS. 2020;34:1-13. doi: 10.1097/QAD.0000000000002385
85. Sung-Tae Y, Kiessling V, Simmons JA, et al. HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat Chem Biol. 2015;11:424-431. doi: 10.1038/nchembio.180045
86. Osuna-Ramos JF, Reyes-Ruiz JM, Del Angel RM. The role of host cholesterol during flavivirus infection. Front Cell Infect Microbiol. 2018;8:388. doi: 10.3389/fcimb.2018.00388
87. Raulin J. Human immunodeficiency virus and host cell lipids. Interesting pathways in research for a new HIV therapy. Prog Lipid Res. 2002;41(1):27-65. doi: 10.1016/s0163-7827(01)00019-4
88. Dunina-Barkovskaya A. Cholesterol recognition motifs (CRAC) in the S protein of coronavirus: A possible target for antiviral therapy? In: Aronow WS, Ed. Management of Dyslipidemia. IntechOpen, 2021. https://doi.org/10.5772/intechopen.95977
89. Dunina-Barkovskaya AY, Vishnyakova KS, Golovko AO, Arutyunyan AM, Baratova LA, Batishchev OV, Radyukhin VA. Amphipathic CRAC-containing peptides derived from the influenza virus A M1 protein modulate cholesterol-dependent activity of cultured IC-21 macrophages. Biochemistry (Moscow). 2018;83(8):982-991. doi: https://doi.org/10.1134/S0006297918080096
90. Glende J, Schwegmann-Wessels C, Al-Falah M, Pfefferle S, Qu X, Deng H, Drosten C, Naim HY, Herrler G. Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2. Virology. 2008;381(2):215-221. doi: 10.1016/j.virol.2008.08.026
91. Corver J, Broer R, van Kasteren P, Spaan W. Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: Refinement of the requirements for SARS coronavirus cell entry. Virol J. 2009;6:230. doi: 10.1186/1743-422X- 6-2306
92. Liu Z, Xiao X, Wei X, Li J, Yang J, Tan H, Zhu J, Zhang Q, Wu J, Liu L. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol. 2020;92(6):595-601. doi: 10.1002/jmv.25726.
93. Wei, C., Wan, L., Yan, Q. et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab. 2020;2:1391-1400. https://doi.org/10.1038/s42255-020-00324-0
94. Baier CJ, Barrantes FJ. Role of cholesterol-recognition motifs in the infectivity of SARS-CoV-2 variants. Colloids Surf B Biointerfaces. 2022 Dec 12;222:113090. doi: 10.1016/j.colsurfb.2022.113090
95. Deslouches B, Di YP. Antimicrobial peptides: A potential therapeutic option for surgical site infections. Clin Surg. 2017;2:1740.
96. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature (London). 1981;292:246-248.
97. Pasupuleti M, Malmsten M, Schmidtchen A. Antimicrobial peptides: A key component of innate immunity. Crit Rev Biotechnol. 2011;32:143-171.
98. Zhou Y, Peng Y. Synergistic effect of clinically used antibiotics and peptide antibiotics against Gram-positive and Gram-negative bacteria. Exp Ther Med. 2013;6(4):1000–1004. doi: 10.3892/etm.2013.1231
99. Lee T-H, Hall KN, Aguilar M-I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr Topics Medicinal Chem. 2016;16:25-39.
100. Ganz T. Selsted ME. Szklarek D. Harwig SS, Daher K, Bainton DF, Lehrer RI. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985;76:1427-1435. doi: 10.1172/JCI112120
101. Eisenhauer PB, Harwig SS, Szklarek D, Ganz T, Selsted ME, Lehrer RI. Purification and antimicrobial properties of three defensins from rat neutrophils. Infect Immun. 1989;57:2021-2027. doi: 10.1128/iai.57.7.2021-2027
102. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389. doi: 10.1038/415389a
103. Bellm L, Lehrer RI, Ganz T. Protegrins: New antibiotics of mammalian origin. Expert Opin Investig Drugs. 2000;9:1731-1742. doi: 10.1517/13543784.9.8.1731
104. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA. 1987;84:5449-5453.
105. Mangoni ML, Papo N, Barra D, Simmaco M, Bozzi A, Di Giulio A, Rinaldi AC. Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochem J. 2004;380:859-865.
106. Rinaldi AC, Mangoni ML, Rufo A, Luzi C, Barra D, Zhao H, Kinnunen PK, Bozzi A, Di Giulio A, Simmaco M. Temporin L: Antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem J. 2002;368:91-100.
107. Koksharova O, Safronova N, Dunina-Barkovskaya A. New antimicrobial peptide with two CRAC motifs: Activity against Escherichia coli and Bacillus subtilis. Microorganisms. 2022;10(8):1538. doi: 10.3390/microorganisms10081538
108. Huang Z, London E. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria. Chem Phys Lipids. 2016;199:11-16. doi: 10.1016/j.chemphyslip.2016.03.0022
109. Guzmán-Flores JE, Steinemann-Hernández L, González de la Vara LE, Gavilanes-Ruiz M, Romeo T, Alvarez AF, Georgellis D. Proteomic analysis of Escherichia coli detergent-resistant membranes (DRM). PLoS One. 2019;14:e0223794. doi: 10.1371/journal.pone.0223794
110. Rohmer M, Bouvier-Nave P, Ourisson G. Distribution of hopanoid triterpenes in prokaryotes. Microbiology. 1984;130:1137-1150. doi: 10.1099/00221287-130-5-1137
111. Sáenz JP, Grosser D, Bradley AS, Lagny TJ, Lavrynenko O, Broda M, Simons K. Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc Natl Acad Sci USA. 2015;112:11971-11976. www.pnas.org/cgi/doi/10.1073/pnas.1515607112
112. Raffy S, Teissié J. Control of lipid membrane stability by cholesterol content. Biophys J. 1999;76:2072-2080. doi: 10.1016/S0006-3495(99)77363-7
113. Zhang X, Barraza KM, Beauchamp JL. Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air–water interface. Proc Natl Acad Sci USA. 2018;115:3255-3260. https://doi.org/10.1073/pnas.1722323115
114. Matsuzaki K, Sugishita K, Fujii N, Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995;34(10):3423-3429. doi: 10.1021/bi00010a034
115. Omardien S, Drijfhout JW, Vaz FM, Wenzel M, Hamoen LW, Zaat SAJ, Brul S. Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. Biochim Biophys Acta Biomembr. 2018;1860:2404-2415.
116. Mackenzie JM, Khromykh AA, Parton RG. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe. 2007;2(4):229-239. doi: 10.1016/j.chom.2007.09.003
117. Campbell SM, Crowe SM, Mak J. Virion-associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity. AIDS. 2002;16:2253–2261. doi: 10.1097/00002030-200211220-00004
118. Keller P, Simons K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol. 1998;140(6):1357-1367. doi: 10.1083/jcb.140.6.1357
119. Gerl MJ, Sampaio JL, Urban S, Kalvodova L, Verbavatz JM, Binnington B, Lindemann D, Lingwood CA, Shevchenko A, Schroeder C, Simons K. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J Cell Biol. 2012;196(2):213-221. doi: 10.1083/jcb.201108175
120. Nayak DP, Hui EK-W, Barman S. Assembly and budding of influenza virus. Virus Res. 2004;106:147-165. doi: 10.1016/j.virusres.2004.08.012
121. Laliberte JP, McGinnes LW, Morrison TG, Incorporation of functional HN-F glycoprotein-containing complexes into Newcastle disease virus is dependent on cholesterol and membrane lipid integrity. J Virol. 2007;81:10636-10648. doi: 10.1128/JVI.01119-07
122. Dou X, Li Y, Han J, Zarlenga DS, Zhu W, Ren X, Dong N, Li X, Li G. Cholesterol of lipid rafts is a key determinant for entry and post-entry control of porcine rotavirus infection. BMC Vet Res. 2018;14(1):45. doi: 10.1186/s12917-018-1366-7
123. Stoeck IK, Lee J-Y, Tabata K, Romero-Brey I, Paul D, Schult P, Lohmann V, Kaderali L, Bartenschlager R. Hepatitis C virus replication depends on endosomal cholesterol homeostasis. J Virol. 2018;92:e01196-17. doi: 10.1128/JVI.01196-17
124. Leier HC, Messer WB, Tafesse FG. Lipids and pathogenic flaviviruses: An intimate union. PLoS Pathogens. 2018;14(5):e1006952. doi: 10.1371/journal.ppat. 1006952
125. Osuna-Ramos JF, Reyes-Ruiz JM, Del Angel RM. The role of host cholesterol during flavivirus infection. Front Cell Infect Microbiol. 2018;8:388. doi: 10.3389/fcimb.2018.00388
126. Li G-M, Li Y-G, Yamate M, Li S-M, Ikuta K. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microbes Infection. 2007;9:96-102. doi: 10.1016/j.micinf.2006.10.015
127. Glende J, Schwegmann-Wessels C, Al-Falah M, Pfefferle S, Qu X, Deng H, Drosten C, Naim HY, Herrler G. Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2. Virology. 2008;381(2):215-221. doi: 10.1016/j.virol.2008.08.026
128. Lee W, Ahn JH, Park HH, Kim HN, Kim H, Yoo Y, Shin H, Hong KS, Jang JG, Park CG, Choi EY, Bae J, Seo Y. COVID-19-activated SREBP2 disturbs cholesterol biosynthesis and leads to cytokine storm. Signal Transduct Target Ther. 2020;5. doi: 10.1038/s41392-020-00292-7
129. Radenkovic D, Chawla S, Pirro M, Sahebkar A, Banach M. Cholesterol in relation to COVID-19: Should we care about it? J Clin Med. 2020;9:1909. doi: 10.3390/jcm9061909
130. Hu X, Chen D, Wu L, He G, Ye W. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin Chim Acta. 2020;510:105-110. doi: 10.1016/j.cca.2020.07.015
131. Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. Coronavirus infection and cholesterol metabolism. Front Immunol. 2022;13:791267. doi: 10.3389/fimmu.2022.791267
132. Hildebrandt E, Mcgee DJ. Helicobacter pylori lipopolysaccharide modification, Lewis antigen expression, and gastric colonization are cholesterol-dependent. BMC Microbiol. 2009;9:258. doi: 10.1186/1471-2180-9-258
133. Morey P., Pfannkuch L., Pang E., Boccellato F., Sigal M., Imai-Matsushima A., Dyer V., Koch M., Mollenkopf H.J., Schlaermann P., et al. Helicobacter pylori depletes cholesterol in gastric glands to prevent interferon gamma signaling and escape the inflammatory response. Gastroenterology. 2018;154:1391-1404. doi: 10.1053/j.gastro.2017.12.008
134. Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells. 2020;10(1):27. doi: 10.3390/cells10010027
135. Rella A, Farnoud AM, Del Poeta M. Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res. 2016;61:63-72. doi: 10.1016/j.plipres.2015.11.003
136. Joffrion TM, Cushion MT. Sterol biosynthesis and sterol uptake in the fungal pathogen Pneumocystis carinii. FEMS Microbiol Lett. 2010;311(1):1-9. doi: 10.1111/j.1574-6968.2010.02007.x
137. Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, McKinney JD, Bertozzi CR, Sassetti CM. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol. 2012;19(2):218-227. doi: 10.1016/j.chembiol.2011.12.016
138. Bonds AC, Sampson NS. More than cholesterol catabolism: regulatory vulnerabilities in Mycobacterium tuberculosis. Curr Opin Chem Biol. 2018;44:39-46. doi: 10.1016/j.cbpa.2018.05.012
139. Ouellet H, Johnston JB, de Montellano PR. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol. 2011;19(11):530-539. doi: 10.1016/j.tim.2011.07.009
140. Maguire PA, Sherman IW. Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-infected red cells. Mol Biochem Parasitol. 1990;38:105-112. doi: 10.1016/0166-6851(90)90210-d
141. Ahiya AI, Bhatnagar S, Morrisey JM, Beck JR, Vaidya AB. Dramatic consequences of reducing erythrocyte membrane cholesterol on Plasmodium falciparum. Microbiol Spectr. 2022;10(1):e0015822. doi: 10.1128/spectrum.00158-22
142. Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol. 2022;12:984049. doi: 10.3389/fcimb.2022.984049
143. Samuel BU, Mohandas N, Harrison T, McManus H, Rosse W, Reid M, Haldar K. The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J Biol Chem. 2001;276:29319–29329. https://doi.org/10.1074/jbc.M101268200
144. Carrière F, Longhi S, Record M. The endosomal lipid bis(monoacylglycero) phosphate as a potential key player in the mechanism of action of chloroquine against SARS-COV-2 and other enveloped viruses hijacking the endocytic pathway. Biochimie. 2020;179:237-246. doi: 10.1016/j.biochi.2020.05.013
145. Glinsky GV. Tripartite combination of candidate pandemic mitigation agents: Vitamin D, quercetin, and estradiol manifest properties of medicinal agents for targeted mitigation of the COVID-19 pandemic defined by genomics-guided tracing of SARS-CoV-2 targets in human cells. Biomedicines. 2020;8(5):129. doi: 10.3390/biomedicines8050129
146. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361:2045–2046. doi: 10.1016/s0140-6736(03)13615-x
147. Bailly C, Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol. Therapeutics. 2020;214:107618. doi: 10.1016/j.pharmthera.2020.107618
148. Viswanathan V, Pharande R, Bannalikar A, Gupta P, Gupta U, Mukne A. Inhalable liposomes of Glycyrrhiza glabra extract for use in tuberculosis: formulation, in vitro characterization, in vivo lung deposition, and in vivo pharmacodynamic studies. Drug Dev Ind Pharm. 2019;45(1):11-20. doi: 10.1080/03639045.2018.1513025
149. Soeiro MNC, Vergoten G, Bailly C. Mechanism of action of glycyrrhizin against Plasmodium falciparum. Mem Inst Oswaldo Cruz. 2021;116:e210084. doi: 10.1590/0074-02760210084
150. Brown AC, Koufos E, Balashova NV, Boesze-Battaglia K, Lally ET. Inhibition of LtxA toxicity by blocking cholesterol binding with peptides. Molec Oral Microbiol. 2016;31(1):94-105. doi: 10.1111/omi.12133
151. Lecanu L, Yao ZX, McCourty A, Sidahmed el-K, Orellana ME, Burnier MN, Papadopoulos V. Control of hypercholesterolemia and atherosclerosis using the cholesterol recognition/interaction amino acid sequence of the translocator protein TSPO. Steroids. 2013;78(2):137-146. doi: 10.1016/j.steroids.2012.10.018
152. Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochim Biophys Acta. 2007;1768:1311-1324. doi: 10.1016/j.bbamem.2007.03.026
153. Kurkov SV, Loftsson T. Cyclodextrins. Int J Pharm. 2013;453(1):167-180. doi: 10.1016/j.ijpharm.2012.06.055
154. Leclercq L. Interactions between cyclodextrins and cellular components: Towards greener medical applications? Beilstein J Org Chem. 2016;12:2644-2662. doi: 10.3762/bjoc.12.261
155. Taylor A M, Liu B, Mari Y, Liu B, Repa JJ. Cyclodextrin mediates rapid changes in lipid balance in NPC1-/- mice without carrying cholesterol through the bloodstream. J Lipid Res. 2012;53(11):2331-2342. doi: 10.1194/jlr.M028241
156. Matsuo M, Togawa M, Hirabaru K, Mochinaga S, Narita A, Adachi M, Egashira M, Irie T, Ohno K. Effects of cyclodextrin in two patients with Niemann-Pick Type C disease. Mol Genet Metab. 2013;108(1):76-81. doi: 10.1016/j.ymgme.2012.11.005
157. Xue H, Chen X, Yu C, Deng Y, Zhang Y, Chen S, Chen X, Chen K, Yang Y, Ling W. Gut Microbially produced indole-3-propionic acid inhibits atherosclerosis by promoting reverse cholesterol transport and its deficiency is causally related to atherosclerotic cardiovascular disease. Circ Res. 2022;131(5):404-420. doi: 10.1161/CIRCRESAHA.122.321253
158. Devries-Seimon T, Li Y, Yao PM, Stone E, Wang Y, Davis RJ, Flavell R, Tabas I. Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol. 2005;171(1):61-73. doi: 10.1083/jcb.200502078
159. Segatto M, Leboffe L, Trapani L, Pallottini V. Cholesterol homeostasis failure in the brain: Implications for synaptic dysfunction and cognitive decline. Curr Med Chem. 2014;21:2788-2802. doi: 10.2174/0929867321666140303142902
160. Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res. 2020;61(5):636-654. doi: 10.1194/jlr.TR119000427
161. Qiu L, Buie C, Reay A, Vaughn MW, Cheng KH. Molecular dynamics simulations reveal the protective role of cholesterol in β-amyloid protein-induced membrane disruptions in neuronal membrane mimics. J Phys Chem B. 2011;115(32),9795-9812. doi: 10.1021/jp2012842
162. Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer’s disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol. 2002;68:209-245.
163. Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm. Vienna Austria. 2006;113:1625-1644. doi: 10.1007/s00702-006-0579-2
164. Valencia A, Reeves PB, Sapp E, Li X, Alexander J, Kegel KB, Chase K, Aronin N, DiFiglia M. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington’s disease. J Neurosci Res. 2010;88:179-190.
165. Jin U, Park SJ, Park SM. Cholesterol metabolism in the brain and its association with Parkinson's disease. Exp Neurobiol. 2019;28(5):554-567. doi: 10.5607/en.2019.28.5.554
166. Abdel-Khalik J, Yutuc E, Crick PJ, Gustafsson JÅ, Warner M, Roman G, Talbot K, Gray E, Griffiths WJ, Turner MR, Wang Y. Defective cholesterol metabolism in amyotrophic lateral sclerosis. J Lipid Res. 2017;58(1):267-278. doi: 10.1194/jlr.P071639
167. Hartmann H, Ho WY, Chang JC, Ling SC. Cholesterol dyshomeostasis in amyotrophic lateral sclerosis: Cause, consequence, or epiphenomenon? FEBS J. 2022;289(24):7688-7709. doi 10.1111/febs.16175
168. Fukui K, Ferris HA, Kahn CR. Effect of cholesterol reduction on receptor signaling in neurons. J Biol Chem. 2015;290(44):26383-26392. doi: 10.1074/jbc.M115.664367
169. Shobab LA, Hsiung GYR, Feldman HH. Cholesterol in Alzheimer's disease. Lancet Neurol. 2005;4(12):841-852. https://doi.org/10.1016/S1474-4422(05)70248-9
170. Ji SR, Wu Y, Sui SF. Cholesterol is an important factor affecting the membrane insertion of beta-amyloid peptide (Aβ1–40), which may potentially inhibit the fibril formation. J Biol Chem. 2002;277(8):6273-6279. doi: 10.1074/jbc.M104146200
171. Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5:16. doi: 10.1186/1750-1172-5-16