Evaluation of LFA-1 Peptide-Methotrexate Conjugates in Modulating Endothelial Cell Inflammation and Cytokine Regulation LFA-1 Peptide-Methotrexate Conjugates

Main Article Content

Helena Yusuf-Makagiansar Tatyana V. Yakovleva Meagan Weldele Rucha Mahadik Teruna J. Siahaan

Abstract

Interactions between vascular endothelial cells and inflammatory leukocytes are intermediated via cell adhesion molecules and they become one of the key events for vascular cell injury and development of atherosclerosis. This study evaluated the effects of MTX-peptide conjugates as anti-inflammatory agents on human coronary artery endothelial cells (HCAEC) and Molt-3 T cells. Cyclic peptides, cLABL and cLBEL, were derived from the a- and b-subunits of leukocyte function-associated antigen-1 (LFA-1), respectively. They interact with intercellular adhesion molecule-1 (ICAM-1) to inhibit LFA-1/ICAM-1-mediated homotypic or heterotypic T-cell adhesion. cLABL and cLBEL were linked to the anti-inflammatory drug, methotrexate (MTX), to produce MTX-cLABL and MTX-cLBEL conjugates. This study showed that peptides and MTX-peptide conjugates inhibited T cell adhesion to HCAEC monolayers while MTX alone did not. The conjugates, but not MTX, inhibited binding of anti-ICAM-1 monoclonal antibody (mAb) to ICAM-1 on the HCAEC. This indicates that conjugation of MTX to cLABL and cLBEL peptides did not dramatically change their binding properties to ICAM-1. The conjugates had relatively lower toxicity to cells compared to MTX alone, while they were more toxic than the parent peptides. At low concentrations, MTX, MTX-cLABL and MTX-cLBEL decreased production of IL-6 and IL-8 as inflammatory cytokines. In contrast, higher concentrations of the parent peptides compared to the conjugates were required to inhibit IL-6 and IL-8 productions. Overall, both MTX-cLABL and MTX-cLBEL were more active than both free-peptides. In addition, the conjugates were less toxic than MTX alone. In conclusion, the conjugate can selectively target MTX to ICAM-1-expressing cells to increase cell targeting and to lower MTX toxicity.

Keywords: LFA-1 peptides, Peptide-drug conjugates, Methotrexate, Targeting ICAM-1 receptor, Targeted Delivery, Inflammatory Suppression, coronary atherosclerosi

Article Details

How to Cite
YUSUF-MAKAGIANSAR, Helena et al. Evaluation of LFA-1 Peptide-Methotrexate Conjugates in Modulating Endothelial Cell Inflammation and Cytokine Regulation. Medical Research Archives, [S.l.], v. 11, n. 2, feb. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3534>. Date accessed: 23 nov. 2024. doi: https://doi.org/10.18103/mra.v11i2.3534.
Section
Research Articles

References

1. Yusuf-Makagiansar H, Anderson ME, Yakovleva TV, Murray JS, Siahaan TJ. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med Res Rev. 2002;22(2):146-167. doi:10.1002/med.10001
2. Haught WH, Mansour M, Rothlein R, Kishimoto TK, Mainolfi EA, Hendricks JB, Hendricks C, Mehta JL. Alterations in circulating intercellular adhesion molecule-1 and L-selectin: further evidence for chronic inflammation in ischemic heart disease. Am Heart J. 1996;132(1 Pt 1):1-8. doi:10.1016/s0002-8703(96)90383-x
3. Kerner T, Ahlers O, Reschreiter H, Buhrer C, Mockel M, Gerlach H. Adhesion molecules in different treatments of acute myocardial infarction. Crit Care. 2001;5(3):145-150. doi:10.1186/cc1014
4. Sardo MA, Castaldo M, Cinquegrani M, Bonaiuto M, Maesano A, Schepis F, Zema MC, Campo GM, Squadrito F, Saitta A. Effects of simvastatin treatment on sICAM-1 and sE-selectin levels in hypercholesterolemic subjects. Atherosclerosis. 2001;155(1):143-147. doi:10.1016/s0021-9150(00)00520-7
5. Ma XL, Lefer DJ, Lefer AM, Rothlein R. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion. Circulation. 1992;86(3):937-946. doi:10.1161/01.cir.86.3.937
6. Suzuki J, Isobe M, Yamazaki S, Horie S, Okubo Y, Sekiguchi M. Inhibition of accelerated coronary atherosclerosis with short-term blockade of intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 in a heterotopic murine model of heart transplantation. J Heart Lung Transplant. 1997;16(11):1141-1148.
7. Nie Q, Fan J, Haraoka S, Shimokama T, Watanabe T. Inhibition of mononuclear cell recruitment in aortic intima by treatment with anti-ICAM-1 and anti-LFA-1 monoclonal antibodies in hypercholesterolemic rats: implications of the ICAM-1 and LFA-1 pathway in atherogenesis. Lab Invest. 1997;77(5):469-482.
8. Chen H, Niu G, Wu H, Chen X. Clinical Application of Radiolabeled RGD Peptides for PET Imaging of Integrin alphavbeta3. Theranostics. 2016;6(1):78-92. doi:10.7150/thno.13242
9. Shi J, Wang F, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. Biophys Rep. 2016;2(1):1-20. doi:10.1007/s41048-016-0021-8
10. Zhou Y, Chakraborty S, Liu S. Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT. Theranostics. 2011;1:58-82. doi:10.7150/thno/v01p0058
11. Tcheng JE. Impact of eptifibatide on early ischemic events in acute ischemic coronary syndromes: a review of the IMPACT II trial. Integrilin to Minimize Platelet Aggregation and Coronary Thrombosis. Am J Cardiol. 1997;80(4A):21B-28B. doi:10.1016/s0002-9149(97)00573-0
12. Moral MEG, Siahaan TJ. Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases. Curr Top Med Chem. 2017;17(32):3425-3443. doi:10.2174/1568026618666180118154514
13. Bella J, Kolatkar PR, Marlor CW, Greve JM, Rossmann MG. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc Natl Acad Sci U S A. 1998;95(8):4140-4145. doi:10.1073/pnas.95.8.4140
14. Bella J, Kolatkar PR, Marlor CW, Greve JM, Rossmann MG. The structure of the two amino-terminal domains of human intercellular adhesion molecule-1 suggests how it functions as a rhinovirus receptor. Virus Res. 1999;62(2):107-117. doi:10.1016/s0168-1702(99)00038-6
15. Shimaoka M, Xiao T, Liu JH, Yang Y, Dong Y, Jun CD, McCormack A, Zhang R, Joachimiak A, Takagi J, Wang JH, Springer TA. Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell. 2003;112(1):99-111. doi:10.1016/s0092-8674(02)01257-6
16. Stanley P, Hogg N. The I domain of integrin LFA-1 interacts with ICAM-1 domain 1 at residue Glu-34 but not Gln-73. J Biol Chem. 1998;273(6):3358-3362. doi:10.1074/jbc.273.6.3358
17. Staunton DE, Dustin ML, Erickson HP, Springer TA. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell. 1990;61(2):243-254. doi:10.1016/0092-8674(90)90805-o
18. Stanley P, Bates PA, Harvey J, Bennett RI, Hogg N. Integrin LFA-1 alpha subunit contains an ICAM-1 binding site in domains V and VI. EMBO J. 1994;13(8):1790-1798. doi:10.1002/j.1460-2075.1994.tb06447.x
19. Bajt ML, Goodman T, McGuire SL. Beta 2 (CD18) mutations abolish ligand recognition by I domain integrins LFA-1 (alpha L beta 2, CD11a/CD18) and MAC-1 (alpha M beta 2, CD11b/CD18). J Biol Chem. 1995;270(1):94-98. doi:10.1074/jbc.270.1.94
20. Goodman TG, Bajt ML. Identifying the putative metal ion-dependent adhesion site in the beta2 (CD18) subunit required for alphaLbeta2 and alphaMbeta2 ligand interactions. J Biol Chem. 1996;271(39):23729-23736. doi:10.1074/jbc.271.39.23729
21. Yusuf-Makagiansar H, Makagiansar IT, Hu Y, Siahaan TJ. Synergistic inhibitory activity of alpha- and beta-LFA-1 peptides on LFA-1/ICAM-1 interaction. Peptides. 2001;22(12):1955-1962. doi:10.1016/s0196-9781(01)00546-0
22. Yusuf-Makagiansar H, Makagiansar IT, Siahaan TJ. Inhibition of the adherence of T-lymphocytes to epithelial cells by a cyclic peptide derived from inserted domain of lymphocyte function-associated antigen-1. Inflammation. 2001;25(3):203-214. doi:10.1023/a:1011044616170
23. Yusuf-Makagiansar H, Siahaan TJ. Binding and internalization of an LFA-1-derived cyclic peptide by ICAM receptors on activated lymphocyte: a potential ligand for drug targeting to ICAM-1-expressing cells. Pharm Res. 2001;18(3):329-335. doi:10.1023/a:1011007014510
24. Yusuf-Makagiansar H, Yakovleva TV, Tejo BA, Jones K, Hu Y, Verkhivker GM, Audus KL, Siahaan TJ. Sequence recognition of alpha-LFA-1-derived peptides by ICAM-1 cell receptors: inhibitors of T-cell adhesion. Chem Biol Drug Des. 2007;70(3):237-246. doi:10.1111/j.1747-0285.2007.00549.x
25. Anderson ME, Siahaan TJ. Mechanism of binding and internalization of ICAM-1-derived cyclic peptides by LFA-1 on the surface of T cells: a potential method for targeted drug delivery. Pharm Res. 2003;20(10):1523-1532. doi:10.1023/a:1026188212126
26. Anderson ME, Siahaan TJ. Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases: designing peptide and small molecule inhibitors. Peptides. 2003;24(3):487-501. doi:10.1016/s0196-9781(03)00083-4
27. Anderson ME, Tejo BA, Yakovleva T, Siahaan TJ. Characterization of binding properties of ICAM-1 peptides to LFA-1: inhibitors of T-cell adhesion. Chem Biol Drug Des. 2006;68(1):20-28. doi:10.1111/j.1747-0285.2006.00407.x
28. Anderson ME, Yakovleva T, Hu Y, Siahaan TJ. Inhibition of ICAM-1/LFA-1-mediated heterotypic T-cell adhesion to epithelial cells: design of ICAM-1 cyclic peptides. Bioorg Med Chem Lett. 2004;14(6):1399-1402. doi:10.1016/j.bmcl.2003.09.100
29. Tibbetts SA, Chirathaworn C, Nakashima M, Jois DS, Siahaan TJ, Chan MA, Benedict SH. Peptides derived from ICAM-1 and LFA-1 modulate T cell adhesion and immune function in a mixed lymphocyte culture. Transplantation. 1999;68(5):685-692. doi:10.1097/00007890-199909150-00015
30. Tibbetts SA, Seetharama Jois D, Siahaan TJ, Benedict SH, Chan MA. Linear and cyclic LFA-1 and ICAM-1 peptides inhibit T cell adhesion and function. Peptides. 2000;21(8):1161-1167. doi:10.1016/s0196-9781(00)00255-2
31. Mahadik R, Kiptoo P, Tolbert T, Siahaan TJ. Immune Modulation by Antigenic Peptides and Antigenic Peptide Conjugates for Treatment of Multiple Sclerosis. Med Res Arch. 2022;10(5)doi:10.18103/mra.v10i5.2804
32. Dustin ML, Baldari CT. The Immune Synapse: Past, Present, and Future. Methods Mol Biol. 2017;1584:1-5. doi:10.1007/978-1-4939-6881-7_1
33. Dustin ML, Shaw AS. Costimulation: building an immunological synapse. Science. 1999;283(5402):649-650. doi:10.1126/science.283.5402.649
34. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. The immunological synapse: a molecular machine controlling T cell activation. Science. 1999;285(5425):221-227. doi:10.1126/science.285.5425.221
35. Badawi AH, Siahaan TJ. Suppression of MOG- and PLP-induced experimental autoimmune encephalomyelitis using a novel multivalent bifunctional peptide inhibitor. J Neuroimmunol. 2013;263(1-2):20-27. doi:10.1016/j.jneuroim.2013.07.009
36. Ridwan R, Kiptoo P, Kobayashi N, Weir S, Hughes M, Williams T, Soegianto R, Siahaan TJ. Antigen-specific suppression of experimental autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor: structure optimization and pharmacokinetics. J Pharmacol Exp Ther. 2010;332(3):1136-1145. doi:10.1124/jpet.109.161109
37. Murray JS, Oney S, Page JE, Kratochvil-Stava A, Hu Y, Makagiansar IT, Brown JC, Kobayashi N, Siahaan TJ. Suppression of type 1 diabetes in NOD mice by bifunctional peptide inhibitor: modulation of the immunological synapse formation. Chem Biol Drug Des. 2007;70(3):227-236. doi:10.1111/j.1747-0285.2007.00552.x
38. Buyuktimkin B, Kiptoo P, Siahaan TJ. Bifunctional Peptide Inhibitors Suppress Interleukin-6 Proliferation and Ameliorates Murine Collagen-Induced Arthritis. J Clin Cell Immunol. 2014;5(6)doi:10.4172/2155-9899.1000273
39. Xu CR, Yusuf-Makagiansar H, Hu Y, Jois SD, Siahaan TJ. Structural and ICAM-1-docking properties of a cyclic peptide from the I-domain of LFA-1: an inhibitor of ICAM-1/LFA- 1-mediated T-cell adhesion. J Biomol Struct Dyn. 2002;19(5):789-799. doi:10.1080/07391102.2002.10506785
40. Benedict SH, Siahaan TJ, Chan MA, Tibbetts SA, Jois SDS. Peptide compositions which induce immune tolerance and method of use. US Patent. 1997 (Nov. 6);PCT/US1997/006799, Publication Number: WO/1997/041149
41. Majumdar S, Anderson ME, Xu CR, Yakovleva TV, Gu LC, Malefyt TR, Siahaan TJ. Methotrexate (MTX)-cIBR conjugate for targeting MTX to leukocytes: conjugate stability and in vivo efficacy in suppressing rheumatoid arthritis. J Pharm Sci. 2012;101(9):3275-3291. doi:10.1002/jps.23164
42. Skehan P. Cytotoxicity and cell growth assays. In: Celis J, ed. Cell Biology: A Laboratory Handbook. Academic Press; 1998:313–318.
43. Ley K. Molecular mechanisms of leukocyte recruitment in the inflammatory process. Cardiovasc Res. 1996;32(4):733-742.
44. Segal R, Yaron M, Tartakovsky B. Methotrexate: mechanism of action in rheumatoid arthritis. Semin Arthritis Rheum. 1990;20(3):190-200. doi:10.1016/0049-0172(90)90060-s
45. Baggott JE, Morgan SL, Ha TS, Alarcon GS, Koopman WJ, Krumdieck CL. Antifolates in rheumatoid arthritis: a hypothetical mechanism of action. Clin Exp Rheumatol. 1993;11 Suppl 8:S101-105.
46. Cronstein BN. Molecular therapeutics. Methotrexate and its mechanism of action. Arthritis Rheum. 1996;39(12):1951-1960. doi:10.1002/art.1780391203
47. Kamata T, Wright R, Takada Y. Critical threonine and aspartic acid residues within the I domains of beta 2 integrins for interactions with intercellular adhesion molecule 1 (ICAM-1) and C3bi. J Biol Chem. 1995;270(21):12531-12535. doi:10.1074/jbc.270.21.12531
48. Edwards CP, Fisher KL, Presta LG, Bodary SC. Mapping the intercellular adhesion molecule-1 and -2 binding site on the inserted domain of leukocyte function-associated antigen-1. J Biol Chem. 1998;273(44):28937-28944. doi:10.1074/jbc.273.44.28937
49. Huang C, Springer TA. A binding interface on the I domain of lymphocyte function-associated antigen-1 (LFA-1) required for specific interaction with intercellular adhesion molecule 1 (ICAM-1). J Biol Chem. 1995;270(32):19008-19016. doi:10.1074/jbc.270.32.19008
50. Deleuran B, Kristensen M, Paludan K, Zachariae C, Larsen CG, Zachariae E, Thestrup-Pedersen K. The effect of second-line antirheumatic drugs on interleukin-8 mRNA synthesis and protein secretion in human endothelial cells. Cytokine. 1992;4(5):403-409. doi:10.1016/1043-4666(92)90085-6
51. Sakuma S, Kato Y, Nishigaki F, Magari K, Miyata S, Ohkubo Y, Goto T. Effects of FK506 and other immunosuppressive anti-rheumatic agents on T cell activation mediated IL-6 and IgM production in vitro. Int Immunopharmacol. 2001;1(4):749-757. doi:10.1016/s1567-5769(01)00008-x
52. Sakuma S, Kato Y, Nishigaki F, Sasakawa T, Magari K, Miyata S, Ohkubo Y, Goto T. FK506 potently inhibits T cell activation induced TNF-alpha and IL-1beta production in vitro by human peripheral blood mononuclear cells. Br J Pharmacol. 2000;130(7):1655-1663. doi:10.1038/sj.bjp.0703472
53. Simonini A, Moscucci M, Muller DW, Bates ER, Pagani FD, Burdick MD, Strieter RM. IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation. 2000;101(13):1519-1526. doi:10.1161/01.cir.101.13.1519
54. Manikwar P, Kiptoo P, Badawi AH, Buyuktimkin B, Siahaan TJ. Antigen-specific blocking of CD4-specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Med Res Rev. 2012;32(4):727-764. doi:10.1002/med.20243