A Prolongation of Peak Time but an Elevated Peak Height of a Clot Wave Form Analysis in Severe Coronavirus Disease 2019

Main Article Content

Kei Suzuki Hideo Wada Kaoru Ikejiri Asami Ito Takeshi Matsumoto Shine Tone Masahiro Hasegawa Motomu Shimaoka Toshiaki Iba Hiroshi Imai


Objective: As coronavirus disease 2019 (COVID-19) is frequently associated with thrombotic diseases, the hemostatic abnormalities in cases of COVID-19 have attracted attention. This study examined the hemostatic abnormalities in patients with severe COVID-19.

Methods: Hemostatic abnormalities were examined based on the activated partial thromboplastin time (APTT) and small amount of tissue factor-induced FIX activation (sTF/FIXa) using a clot waveform analysis (CWA). The anti-Xa activity, C5b-9 and ADAMTS 13 values were also examined in these patients.

Results: CWA-APTT and CWA-sTF/FIXa showed that the peak times were prolonged, but peak heights were increased before anticoagulant therapy. The parameters of the CWA-APTT and CWA-sTF/FIXa were not correlated with the anti-Xa activity. The peak times of the CWA-sTF/FIXa were significantly longer in non-survivors than survivors. Although the plasma levels of C5b-9 and ADAMTS13 activity were markedly decreased in severe COVID-19 patients, there were no significant differences in C5b-9 levels or ADAMTS-13 activity between survivors and non-survivors.

Conclusions: The CWA showed the marked hemostatic abnormalities and hypercoagulability in COVID-19 patients, and anticoagulant therapy might not be monitored by routine APTT.

Article Details

How to Cite
SUZUKI, Kei et al. A Prolongation of Peak Time but an Elevated Peak Height of a Clot Wave Form Analysis in Severe Coronavirus Disease 2019. Medical Research Archives, [S.l.], v. 11, n. 1, jan. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3549>. Date accessed: 23 may 2024. doi: https://doi.org/10.18103/mra.v11i1.3549.
Research Articles


1. Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X. Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chan H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020;395(10229), 1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
2. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). J Gen Intern Med. 2020;35(5):1545–1549. doi: 10.1007/s11606-020-05762-w.
3. Gavriatopoulou M, Ntanasis-Stathopoulos I, Korompoki E, Fotiou D, Migkou M, Tzanninis IG, Psaltopoulou T, Kastritis E, Terpos E, Dimopoulos MA. Emerging treatment strategies for COVID-19 infection. Clin Exp Med. 2021;21(2):167-179. doi: 10.1007/s10238-020-00671-y.
4. Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD, Blomberg WR, Meigs DD, Hasan M, Patel M, Kline P, Chang RC, Chang L, Gendelman HE, Kevadiya BD. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J Neuroimmune Pharmacol. 2020;15(3):359-386. doi: 10.1007/s11481-020-09944-5.
5. Hertanto DM, Wiratama BS, Sutanto H, Wungu CDK. Immunomodulation as a Potent COVID-19 Pharmacotherapy: Past, Present and Future. J Inflamm Res. 2021;14:3419-3428. doi: 10.2147/JIR.S322831.
6. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. 2020;383(25):2451-2460. doi: 10.1056/NEJMcp2009575.
7. Gandhi, R.T.; Lynch, J.B.; Del Rio, C. Mild or Moderate Covid-19. N Engl J Med. 2020;383(18):1757-1766. doi: 10.1056/NEJMcp2009249.
8. Yamamoto A, Wada H, Ichikawa Y, Mizuno H, Tomida M, Masuda J, Makino K, Kodama S, Yoshida M, Fukui S, Moritani I, Inoue H, Shiraki K, Shimpo H. Evaluation of Biomarkers of Severity in Patients with COVID-19 Infection. J Clin Med. 2021;10(17):3775. doi: 10.3390/jcm10173775.
9. Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021; 398(10317):2126-2128. doi: 10.1016/S0140-6736(21)02758-6.
10. Jiménez D, García-Sanchez A, Rali P, Muriel A, Bikdeli B, Ruiz-Artacho P, Le Mao R, Rodríguez C, Hunt BJ, Monreal M..: Incidence of VTE and Bleeding Among Hospitalized Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. Chest. 2021;159(3):1182-1196.
doi: 10.1016/j.chest.2020.11.005.
11. Nannoni S, de Groot R, Bell S, Markus HS. Stroke in COVID-19: A systematic review and meta-analysis. Int J Stroke. 2021;16(2):137-149. doi: 10.1177/1747493020972922
12. Zhao YH, Zhao L, Yang XC, Wang P. Cardiovascular complications of SARS-CoV-2 infection (COVID-19): a systematic review and meta-analysis. Rev Cardiovasc Med. 2021;22(1):159-165.
doi: 10.31083/j.rcm.2021.01.238
13. Chan NC, Weitz JI. COVID-19 coagulopathy, thrombosis, and bleeding. Blood. 2020 Jul 23;136(4):381-383. doi: 10.1182/blood.2020007335.
14. Wada H, Ichikawa Y, Ezaki M, Yamamoto A, Tomida M, Yoshida M, Fukui S, Moritani I, Shiraki K, Shimaoka M, Iba T, Suzuki-Inoue K, Shimpo H. Elevated Plasma Soluble C-Type Lectin-like Receptor 2 Is Associated with the Worsening of Coronavirus Disease 2019.J Clin Med. 2022 Feb 14;11(4):985. doi: 10.3390/jcm11040985.
15. Wada H, Shiraki K, Suzuki-Inoue K.: "Unconventional CD147-dependent platelet activation elicited by SARS-CoV-2 in COVID-19": Comment from Wada et al. J Thromb Haemost. 2022 Sep;20(9):2159-2160. doi: 10.1111/jth.15791.
16. Wada H, Matsumoto T, Ohishi K, Shiraki K, Shimaoka M: Update on the Clot Waveform Analysis. Clin Appl Thromb Hemost. 2020; 26:1076029620912027
17. Kobayashi M, Wada H, Fukui S, Mizutani H, Ichikawa Y, Shiraki K, Moritani I, Inoue H, Shimaoka M, Shimpo H. A Clot Waveform Analysis Showing a Hypercoagulable State in Patients with Malignant Neoplasms. J Clin Med. 2021; 10(22):5352. doi: 10.3390/jcm10225352.
18. Matsumoto T, Wada H, Fujimoto N, Toyoda J, Abe Y, Ohishi K, Yamashita Y, Ikejiri M, Hasegawa K, Suzuki K, Imai H, Nakatani K, Katayama N.: An Evaluation of the Activated Partial Thromboplastin Time Waveform. Clin Appl Thromb Hemost. 2018;24(5):764-770. doi: 10.1177/1076029617724230.
19. Kokame K, Nobe Y, Kokubo Y, Okayama A, Miyata T: FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay. Br J Haematol, 2005;129(1):93-100. doi: 10.1111/j.1365-2141.2005.05420.x.
20. Kobayashi T, Wada H, Kamikura Y, Matsumoto T, Mori Y, Kaneko T, Nobori T, Matsumoto M, Fujimura Y, Shiku H. Decreased ADAMTS13 activity in plasma from patients with thrombotic thrombocytopenic purpura. Thromb Res, 2007;119(4):447-52.
doi: 10.1016/j.thromres.2006.04.007.
21. Matsumoto T, Toyoda H, Amano K, Hirayama M, Ishikawa E, Fujimoto M, Ito M, Ohishi K, Katayama N, Yoshida Y, Matsumoto M, Kawamura N, Ikejiri M, Kawakami K, Miyata T, Wada H. Clinical Manifestation of Patients With Atypical Hemolytic Uremic Syndrome With the C3 p.I1157T Variation in the Kinki Region of Japan. Clin Appl Thromb Hemost. 2018 Nov;24(8):1301-1307. doi: 10.1177/1076029618771750.2018; 24: 1301-7
22. Poor HD. Pulmonary Thrombosis and Thromboembolism in COVID-19. Chest. 2021;160(4):1471-1480. doi:10.1016/j.chest.2021.06.016.
23. Hasegawa M, Wada H, Tone S, Yamaguchi T, Wakabayashi H, Ikejiri M, Watanabe M, Fujimoto N, Matsumoto T, Ohishi K, Yamashita Y, Katayama N, Sudo A. Monitoring of hemostatic abnormalities in major orthopedic surgery patients treated with edoxaban by APTT waveform. Int J Lab Hematol. 2018 Feb;40(1):49-55. doi: 10.1111/ijlh.12727.
24. Wada H, Ichikawa Y, Ezaki M, Matsumoto T, Yamashita Y, Shiraki K, Shimaoka M, Shimpo H: The reevaluation of thrombin time using a clot waveform analysis. J. Clin. Med. 2021;10(21):4840.
doi: 10.3390/jcm10214840.
25. Wada H, Shiraki K, Matsumoto T, Ohishi K, Shimpo H, Shimaoka M: Effects of platelet and phospholipids on clot formation activated by a small amount of tissue factor. Thromb Res 2020;193:146-153.
doi: 10.1016/j.thromres.2020.06.018.
26. Iba T, Wada H, Levy JH. Platelet Activation and Thrombosis in COVID-19. Semin Thromb Hemost. 2023;49(1):55-61. doi: 10.1055/s-0042-1749441.