Lead Drug Discover Strategies from Natural Medicines Based on Network Pharmacology
Main Article Content
Abstract
The need for therapeutics to overcome development of existing diseases research to discover new lead agents. In the face of public health challenges worldwide, natural medicines play a pivotal role in innovative lead drug discovery. Network pharmacology can easily construct complicated poly-pharmacology network based on lead compound, biological function, and bioactive target proteins, which meets the overall feature of natural medicines, and enable to elucidate the action mechanism at molecule-protein level with systematic view. In this work, we first summarized the recent progress delineating lead drug development and its interaction with natural medicines. Second, we focused on the relationship between natural medicines and network pharmacology. Additionally, we discussed current issues and potential prospects for the lead drug discover from natural medicines by network pharmacology. Further investigations should be focus on relevant structural analysis for biological experiment, also the dynamic and quantitative network development. In summary, it is a rational approach for innovative lead drug discovery, and with the development of structure and biology research, this approach makes it a very powerful method for the lead molecules in a high-throughput manner from a comprehensive and powerful special multi-compound to target protein/disease poly pharmacology network.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Atanasov, A. G.; Waltenberger, B.; Pferschy-Wenzig, E. M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E. H.; Rollinger, J. M.; Schuster, D.; Breuss, J. M.; Bochkov, V.; Mihovilovic, M. D.; Kopp, B.; Bauer, R.; Dirsch, V. M.; Stuppner, H., Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances, 2015, 33 (8), 1582-1614.doi:10.1016/j.biotechadv.2015.08.001.
3. Negrel, S.; Brunel, J. M., Synthesis and Biological Activities of Naturally Functionalized Polyamines: An Overview. Curr Med Chem, 2021, 28 (17), 3406-3448.doi:10.2174/0929867327666201102114544.
4. Degotte, G.; Pirotte, B.; Francotte, P.; Frederich, M., Overview of Natural Antiplasmodials from the Last Decade to Inspire Medicinal Chemistry. Curr Med Chem, 2021, 28 (30), 6199-6233.doi:10.2174/0929867328666210329112354.
5. Yin, L.; Gao, Y.; Li, Z.; Wang, M.; Chen, K., Analysis of Chinese Herbal Formulae Recommended for COVID-19 in Different Schemes in China: A Data Mining Approach. Comb Chem High Throughput Screen, 2021, 24 (7), 957-967.doi:10.2174/1386207323666201001114101.
6. Dey, R.; Dey, S.; Samadder, A.; Saxena, A.; Nandi, S., Natural inhibitors against potential targets of cyclooxygenase, lipoxygenase and leukotrienes. Comb Chem High Throughput Screen, 2021.doi:10.2174/1386207325666210917111847.
7. Meng, Q.; Zhou, J.; You, F.; Wu, Y.; Yang, L.; Wang, Y.; Zhang, X.; Gao, S.; Yu, R.; Yin, X., A novel biphenyl diester derivative, AB38b, inhibits glioblastoma cell growth via the ROS-AKT/mTOR pathway. Biochem Pharmacol, 2021, 194, 114795. doi:10.1016/j.bcp.2021.114795.
8. Tibon, N. S.; Ng, C. H.; Cheong, S. L., Current progress in antimalarial pharmacotherapy and multi-target drug discovery. Eur J Med Chem, 2020, 188, 111983.doi:10.1016/j.ejmech.2019.111983.
9. Ma, S. T.; Zhang, N.; Hong, G.; Feng, C. T.; Hong, S. W.; Dai, G. L., Unraveling the Action Mechanism of Buyang Huanwu Tang (BYHWT) for Cerebral Ischemia by Systematic Pharmacological Methodology. Comb Chem High Throughput Screen, 2021, 24 (7), 1114-1125. doi:10.2174/1386207323666200901100529.
10. Wang, Z. F.; Hu, Y. Q.; Wu, Q. G.; Zhang, R., Virtual Screening of Potential Anti-fatigue Mechanism of Polygonati Rhizoma Based on Network Pharmacology. Comb Chem High Throughput Screen, 2019, 22 (9), 612-624.doi:10.2174/1386207322666191106110615.
11. Zhang, N.; Wang, J.; Sheng, A.; Huang, S.; Tang, Y.; Ma, S.; Hong, G., Emodin Inhibits the Proliferation of MCF-7 Human Breast Cancer Cells Through Activation of Aryl Hydrocarbon Receptor (AhR). Front Pharmacol, 2020, 11, 622046.doi:10.3389/fphar.2020.622046.
12. Dai, G.; Wang, D.; Ma, S.; Hong, S.; Ding, K.; Tan, X.; Ju, W., ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin. Phytomedicine, 2022, 102, 154149.doi:10.1016/j.phymed.2022.154149.
13. Ma, S.; Zhang, X.; Cen, J.; Hong, G.; Hong, S.; Ju, W., [A systematic pharmacological investigation of pharmacologically active ingredients in Toujie Quwen granules for treatment of COVID-19]. Nan Fang Yi Ke Da Xue Xue Bao, 2020, 40 (8), 1072-1080. doi:10.12122/j.issn.1673-4254.2020.08.02.
14. Barkat, M. A.; Goyal, A.; Barkat, H. A.; Salauddin, M.; Pottoo, F. H.; Anwer, E. T., Herbal Medicine: Clinical Perspective and Regulatory Status. Comb Chem High Throughput Screen, 2021, 24 (10), 1573-1582. doi:10.2174/1386207323999201110192942.
15. Jin, L.; Schmiech, M.; El Gaafary, M.; Zhang, X.; Syrovets, T.; Simmet, T., A comparative study on root and bark extracts of Eleutherococcus senticosus and their effects on human macrophages. Phytomedicine, 2020, 68, 153181.doi:10.1016/j.phymed.2020.153181.