Disease-Specific Treatment for Primary Membranous Nephropathy: The Role of Monoclonal Antibodies

Main Article Content

Piero Ruggenenti Giuseppe Remuzzi


Primary Membranous Nephropathy is an autoimmune disease caused by the deposition of Immunoglobulin G and complement components on the subepithelial layer of the glomerular capillary wall. It affects 5-10 patients per million population and is the second cause of nephrotic syndrome in adults after diabetic kidney disease. For decades steroids and non-specific immunosuppressive medications have been advocated as a therapeutic option for patients with membranous nephropathy at increased risk of kidney failure because of persistent nephrotic syndrome. These medications, however, have major and potentially fatal adverse effects that offset their potential benefits and should be abandoned. The discovery of nephritogenic autoantibodies against podocyte M-type phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing protein 7A (THSD7A) antigens provided a clear pathophysiological rationale for interventions specifically targeting B cell lineages to prevent antibody production and subepithelial deposition. The first-in-class anti-CD20 monoclonal antibody rituximab is safe and achieves remission in approximately two-thirds of patients with nephrotic membranous nephropathy. In PLA2R-related disease, remission is invariably preceded by depletion of anti PLA2R autoantibodies and relapse by their re-emergence into the circulation. Because of its superior risk/benefit profile as compared to non-specific immunosuppressive therapy, rituximab is now first-line therapy for patients with membranous nephropathy at risk of kidney failure. Novel monoclonal antibodies targeting CD20 cells (such as ofatumumab and obinutuzumab) and their differentiation (belimumab) or targeting long-living antibody producing CD38 memory cells (daratumumab, felzartamab) along with proteasome inhibitors such as bortezomib are being evaluated for the treatment of nephrotic patients with membranous nephropathy who are resistant or intolerant to rituximab. Complement inhibitor therapy might serve to stop the glomerular inflammatory process until the benefits of these medications become effective.

Thus, major advances in the understanding of the mechanisms of membranous nephropathy have led to novel treatment perspectives. The integrated evaluation of serum autoantibody titer and proteinuria, together with serum albumin levels in patients with overt nephrotic syndrome, could guide diagnosis of membranous nephropathy and individually tailored treatment protocols. The introduction of monoclonal antibodies targeting disease-specific mechanisms will pave the way for a novel therapeutic paradigm based on the principle of precision medicine and personalized therapy.

Keywords: membranous nephropathy, nephrotic syndrome, monoclonal antibodies, CD20, CD38, PLA2R, rituximab, ofatumumab, obinutuzumab, felzartamab, belimubab, complement

Article Details

How to Cite
RUGGENENTI, Piero; REMUZZI, Giuseppe. Disease-Specific Treatment for Primary Membranous Nephropathy: The Role of Monoclonal Antibodies. Medical Research Archives, [S.l.], v. 11, n. 3, mar. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3601>. Date accessed: 20 apr. 2024. doi: https://doi.org/10.18103/mra.v11i3.3601.
Research Articles


1. McQuarrie EP, Mackinnon B, Stewart GA, Geddes CC. Membranous nephropathy remains the commonest primary cause of nephrotic syndrome in a northern European Caucasian population. Nephrol Dial Transpl [Internet]. 2010;25(3):1009–10; author reply 1010-1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20037184
2. Ronco P, Debiec H. Pathophysiological advances in membranous nephropathy: time for a shift in patient’s care. Lancet [Internet]. 2015;385(9981):1983–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26090644
3. Ruggenenti P, Fervenza FC, Remuzzi G. Treatment of membranous nephropathy: time for a paradigm shift. Nat Rev Nephrol [Internet]. 2017;13(9):563–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28669992
4. Cattran DC, Kim ED, Reich H, Hladunewich M, Kim SJ. Membranous Nephropathy: Quantifying Remission Duration on Outcome. J Am Soc Nephrol [Internet]. 2017;28(3):995–1003. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27756808
5. Ruggenenti P, Perna A, Remuzzi G. Retarding progression of chronic renal disease: the neglected issue of residual proteinuria. Kidney Int [Internet]. 2003;63(6):2254–61. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12753315
6. Schieppati A, Ruggenenti P, Perna A, Remuzzi G. Nonimmunosuppressive therapy of membranous nephropathy. Semin Nephrol [Internet]. 2003;23(4):333–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12923721
7. Glassock RJ. The treatment of idiopathic membranous nephropathy: a dilemma or a conundrum? Am J Kidney Dis [Internet]. 2004;44(3):562–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15332231
8. Schieppati A, Mosconi L, Perna A, Mecca G, Bertani T, Garattini S, et al. Prognosis of untreated patients with idiopathic membranous nephropathy. N Engl J Med [Internet]. 1993;329(2):85–9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8510707
9. Jones DB. Nephrotic glomerulonephritis. Am J Pathol [Internet]. 1957;33(2):313–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13402889
10. Heymann W, Hackel DB, Harwood S, Wilson SG, Hunter JL. Production of nephrotic syndrome in rats by Freund’s adjuvants and rat kidney suspensions. Proc Soc Exp Biol Med [Internet]. 1959;100(4):660–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13645677
11. Kerjaschki D, Farquhar MG. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc Natl Acad Sci U A [Internet]. 1982;79(18):5557–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6752952
12. Debiec H, Guigonis V, Mougenot B, Decobert F, Haymann JP, Bensman A, et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N Engl J Med [Internet]. 2002;346(26):2053–60. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12087141
13. Beck LH Jr, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med [Internet]. 2009;361(1):11–21. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19571279
14. Hofstra JM, Beck LH Jr, Beck DM, Wetzels JF, Salant DJ. Anti-phospholipase A(2) receptor antibodies correlate with clinical status in idiopathic membranous nephropathy. Clin J Am Soc Nephrol [Internet]. 2011;6(6):1286–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21474589
15. Qin W, Beck LH Jr, Zeng C, Chen Z, Li S, Zuo K, et al. Anti-phospholipase A2 receptor antibody in membranous nephropathy. J Am Soc Nephrol [Internet]. 2011;22(6):1137–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21566055
16. Stanescu HC, Arcos-Burgos M, Medlar A, Bockenhauer D, Kottgen A, Dragomirescu L, et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med [Internet]. 2011;364(7):616–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21323541
17. Tomas NM, Beck LH Jr, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med [Internet]. 2014;371(24):2277–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25394321
18. Larsen CP, Cossey LN, Beck LH. THSD7A staining of membranous glomerulopathy in clinical practice reveals cases with dual autoantibody positivity. Mod Pathol [Internet]. 2016;29(4):421–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26847174
19. Hoxha E, Reinhard L, Stahl RAK. Membranous nephropathy: new pathogenic mechanisms and their clinical implications. Nat Rev Nephrol. 2022 Jul;18(7):466–78.
20. Lv J, Hou W, Zhou X, Liu G, Zhou F, Zhao N, et al. Interaction between PLA2R1 and HLA-DQA1 variants associates with anti-PLA2R antibodies and membranous nephropathy. J Am Soc Nephrol [Internet]. 2013;24(8):1323–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23813219
21. Beck LH Jr, Fervenza FC, Beck DM, Bonegio RG, Malik FA, Erickson SB, et al. Rituximab-Induced Depletion of Anti-PLA2R Autoantibodies Predicts Response in Membranous Nephropathy. J Am Soc Nephrol [Internet]. 2011;22(8):1543–50. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21784898
22. Oh YJ, Yang SH, Kim DK, Kang SW, Kim YS. Autoantibodies against phospholipase A2 receptor in Korean patients with membranous nephropathy. PLoS One [Internet]. 2013;8(4):e62151. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23637987
23. Bech AP, Hofstra JM, Brenchley PE, Wetzels JF. Association of anti-PLA(2)R antibodies with outcomes after immunosuppressive therapy in idiopathic membranous nephropathy. Clin J Am Soc Nephrol [Internet]. 2014;9(8):1386–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25035272
24. Hoxha E, Thiele I, Zahner G, Panzer U, Harendza S, Stahl RA. Phospholipase A2 receptor autoantibodies and clinical outcome in patients with primary membranous nephropathy. J Am Soc Nephrol [Internet]. 2014;25(6):1357–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24610926
25. Hoxha E, Harendza S, Pinnschmidt H, Panzer U, Stahl RA. M-type phospholipase A2 receptor autoantibodies and renal function in patients with primary membranous nephropathy. Clin J Am Soc Nephrol [Internet]. 2014;9(11):1883–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25267554
26. Hoxha E, Harendza S, Pinnschmidt H, Panzer U, Stahl RA. PLA2R antibody levels and clinical outcome in patients with membranous nephropathy and non-nephrotic range proteinuria under treatment with inhibitors of the renin-angiotensin system. PLoS One [Internet]. 2014;9(10):e110681. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25313791
27. Ruggenenti P, Debiec H, Ruggiero B, Chianca A, Pelle T, Gaspari F, et al. Anti-Phospholipase A2 Receptor Antibody Titer Predicts Post-Rituximab Outcome of Membranous Nephropathy. J Am Soc Nephrol [Internet]. 2015;26(10):2545–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25804280
28. Hofstra JM, Debiec H, Short CD, Pelle T, Kleta R, Mathieson PW, et al. Antiphospholipase A2 receptor antibody titer and subclass in idiopathic membranous nephropathy. J Am Soc Nephrol [Internet]. 2012;23(10):1735–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22956816
29. Timmermans SA, Abdul Hamid MA, Cohen Tervaert JW, Damoiseaux JG, van Paassen P. Anti-PLA2R Antibodies as a Prognostic Factor in PLA2R-Related Membranous Nephropathy. Am J Nephrol [Internet]. 2015;42(1):70–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26344651
30. Kanigicherla D, Gummadova J, McKenzie EA, Roberts SA, Harris S, Nikam M, et al. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy. Kidney Int [Internet]. 2013;83(5):940–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23364522
31. Radice A, Trezzi B, Maggiore U, Pregnolato F, Stellato T, Napodano P, et al. Clinical usefulness of autoantibodies to M-type phospholipase A2 receptor (PLA2R) for monitoring disease activity in idiopathic membranous nephropathy (IMN). Autoimmun Rev [Internet]. 2016;15(2):146–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26527329
32. Hoxha E, Beck LH Jr, Wiech T, Tomas NM, Probst C, Mindorf S, et al. An Indirect Immunofluorescence Method Facilitates Detection of Thrombospondin Type 1 Domain-Containing 7A-Specific Antibodies in Membranous Nephropathy. J Am Soc Nephrol [Internet]. 2017;28(2):520–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27436855
33. Reinhard L, Zahner G, Menzel S, Koch-Nolte F, Stahl RAK, Hoxha E. Clinical Relevance of Domain-Specific Phospholipase A2 Receptor 1 Antibody Levels in Patients with Membranous Nephropathy. J Am Soc Nephrol JASN. 2020 Jan;31(1):197–207.
34. Seitz-Polski B, Dolla G, Payre C, Girard CA, Polidori J, Zorzi K, et al. Epitope Spreading of Autoantibody Response to PLA2R Associates with Poor Prognosis in Membranous Nephropathy. J Am Soc Nephrol [Internet]. 2016;27(5):1517–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26567246
35. Ruggenenti P, Cravedi P, Sghirlanzoni MC, Gagliardini E, Conti S, Gaspari F, et al. Effects of rituximab on morphofunctional abnormalities of membranous glomerulopathy. Clin J Am Soc Nephrol [Internet]. 2008;3(6):1652–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18684896
36. Cravedi P, Remuzzi G, Ruggenenti P. Rituximab in primary membranous nephropathy: first-line therapy, why not? Nephron Clin Pr [Internet]. 2014;128(3–4):261–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25427622
37. De Vriese AS, Glassock RJ, Nath KA, Sethi S, Fervenza FC. A Proposal for a Serology-Based Approach to Membranous Nephropathy. J Am Soc Nephrol [Internet]. 2017;28(2):421–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27777266
38. Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transpl [Internet]. 2006;6(5 Pt 1):859–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16611321
39. Hoffman W, Lakkis FG, Chalasani G. B Cells, Antibodies, and More. Clin J Am Soc Nephrol [Internet]. 2016;11(1):137–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26700440
40. Alduaij W, Ivanov A, Honeychurch J, Cheadle EJ, Potluri S, Lim SH, et al. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood. 2011 Apr 28;117(17):4519–29.
41. Glennie MJ, French RR, Cragg MS, Taylor RP. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol. 2007 Sep;44(16):3823–37.
42. Zhou X, Hu W, Qin X. The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. The Oncologist. 2008 Sep;13(9):954–66.
43. Mössner E, Brünker P, Moser S, Püntener U, Schmidt C, Herter S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010 Jun 3;115(22):4393–402.
44. Beers SA, Chan CHT, James S, French RR, Attfield KE, Brennan CM, et al. Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood. 2008 Nov 15;112(10):4170–7.
45. Ivanov A, Beers SA, Walshe CA, Honeychurch J, Alduaij W, Cox KL, et al. Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lysosome-mediated cell death in human lymphoma and leukemia cells. J Clin Invest. 2009 Aug;119(8):2143–59.
46. Reddy V, Cambridge G, Isenberg DA, Glennie MJ, Cragg MS, Leandro M. Internalization of rituximab and the efficiency of B Cell depletion in rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheumatol Hoboken NJ. 2015 May;67(8):2046–55.
47. Klein C, Lammens A, Schäfer W, Georges G, Schwaiger M, Mössner E, et al. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. mAbs. 2013;5(1):22–33.
48. Beers SA, French RR, Chan HTC, Lim SH, Jarrett TC, Vidal RM, et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood. 2010 Jun 24;115(25):5191–201.
49. Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003 Oct 20;22(47):7359–68.
50. Janas E, Priest R, Wilde JI, White JH, Malhotra R. Rituxan (anti-CD20 antibody)-induced translocation of CD20 into lipid rafts is crucial for calcium influx and apoptosis. Clin Exp Immunol. 2005 Mar;139(3):439–46.
51. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000 Apr;6(4):443–6.
52. Herter S, Herting F, Mundigl O, Waldhauer I, Weinzierl T, Fauti T, et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 2013 Oct;12(10):2031–42.
53. Takahashi Y, Ikezumi Y, Saitoh A. Rituximab protects podocytes and exerts anti-proteinuric effects in rat adriamycin-induced nephropathy independent of B-lymphocytes. Nephrol Carlton Vic. 2017 Jan;22(1):49–57.
54. Remuzzi G, Chiurchiu C, Abbate M, Brusegan V, Bontempelli M, Ruggenenti P. Rituximab for idiopathic membranous nephropathy. Lancet [Internet]. 2002;360(9337):923–4. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12354476
55. Ruggenenti P, Chiurchiu C, Brusegan V, Abbate M, Perna A, Filippi C, et al. Rituximab in idiopathic membranous nephropathy: a one-year prospective study. J Am Soc Nephrol [Internet]. 2003;14(7):1851–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12819245
56. Fervenza FC, Abraham RS, Erickson SB, Irazabal MV, Eirin A, Specks U, et al. Rituximab therapy in idiopathic membranous nephropathy: a 2-year study. Clin J Am Soc Nephrol [Internet]. 2010;5(12):2188–98. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20705965
57. Fervenza FC, Cosio FG, Erickson SB, Specks U, Herzenberg AM, Dillon JJ, et al. Rituximab treatment of idiopathic membranous nephropathy. Kidney Int [Internet]. 2008;73(1):117–25. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17943078
58. Piro LD, White CA, Grillo-Lopez AJ, Janakiraman N, Saven A, Beck TM, et al. Extended Rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol [Internet]. 1999;10(6):655–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10442187
59. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol [Internet]. 1998;16(8):2825–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9704735
60. Ruggenenti P, Cravedi P, Chianca A, Perna A, Ruggiero B, Gaspari F, et al. Rituximab in idiopathic membranous nephropathy. J Am Soc Nephrol [Internet]. 2012;23(8):1416–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22822077
61. Makker SP, Kanalas JJ. Course of transplanted Heymann nephritis kidney in normal host. Implications for mechanism of proteinuria in membranous glomerulonephropathy. J Immunol [Internet]. 1989;142(10):3406–10. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2654289
62. Huang L, Dong QR, Zhao YJ, Hu GC. Rituximab for the management of idiopathic membranous nephropathy: a meta-analysis. Int Urol Nephrol. 2021 Jan;53(1):111–9.
63. Ambalavanan S, Fauvel JP, Sibley RK, Myers BD. Mechanism of the antiproteinuric effect of cyclosporine in membranous nephropathy. J Am Soc Nephrol [Internet]. 1996;7(2):290–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8785399
64. Meijer JM, Meiners PM, Vissink A, Spijkervet FK, Abdulahad W, Kamminga N, et al. Effectiveness of rituximab treatment in primary Sjogren’s syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum [Internet]. 2010;62(4):960–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20131246
65. Dass S, Bowman SJ, Vital EM, Ikeda K, Pease CT, Hamburger J, et al. Reduction of fatigue in Sjogren syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study. Ann Rheum Dis [Internet]. 2008;67(11):1541–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18276741
66. Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, Oates JC, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum [Internet]. 2010;62(1):222–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20039413
67. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med [Internet]. 2010;363(3):221–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20647199
68. Jones RB, Tervaert JW, Hauser T, Luqmani R, Morgan MD, Peh CA, et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med [Internet]. 2010;363(3):211–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20647198
69. Carson KR, Evens AM, Richey EA, Habermann TM, Focosi D, Seymour JF, et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood [Internet]. 2009;113(20):4834–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19264918
70. Feehally J. Targeted therapies: Is there a role for rituximab in nephrotic syndrome? Nat Rev Nephrol [Internet]. 2014;10(5):245–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24614409
71. Clifford DB, Ances B, Costello C, Rosen-Schmidt S, Andersson M, Parks D, et al. Rituximab-associated progressive multifocal leukoencephalopathy in rheumatoid arthritis. Arch Neurol [Internet]. 2011;68(9):1156–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21555606
72. Kaufman GP, Aksamit AJ, Klein CJ, Yi ES, Delone DR, Litzow MR. Progressive multifocal leukoencephalopathy: a rare infectious complication following allogeneic hematopoietic cell transplantation (HCT). Eur J Haematol [Internet]. 2014;92(1):83–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24118404
73. Molloy ES, Calabrese LH. Progressive multifocal leukoencephalopathy: a national estimate of frequency in systemic lupus erythematosus and other rheumatic diseases. Arthritis Rheum [Internet]. 2009;60(12):3761–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19950261
74. Pugnet G, Pagnoux C, Bezanahary H, Ly KH, Vidal E, Guillevin L. Progressive multifocal encephalopathy after cyclophosphamide in granulomatosis with polyangiitis (Wegener) patients: case report and review of literature. Clin Exp Rheumatol [Internet]. 2013;31(1 Suppl 75):S62-4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23663683
75. Sellier-Leclerc AL, Belli E, Guerin V, Dorfmuller P, Deschenes G. Fulminant viral myocarditis after rituximab therapy in pediatric nephrotic syndrome. Pediatr Nephrol [Internet]. 2013;28(9):1875–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23700173
76. Delbue S, Ferraresso M, Elia F, Belingheri M, Carloni C, Signorini L, et al. Investigation of polyomaviruses replication in pediatric patients with nephropathy receiving rituximab. J Med Virol [Internet]. 2012;84(9):1464–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22825826
77. Iijima K, Sako M, Nozu K, Mori R, Tuchida N, Kamei K, et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet [Internet]. 2014;384(9950):1273–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24965823
78. Ruggenenti P, Ruggiero B, Cravedi P, Vivarelli M, Massella L, Marasa M, et al. Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J Am Soc Nephrol [Internet]. 2014;25(4):850–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24480824
79. Faurschou M, Sorensen IJ, Mellemkjaer L, Loft AG, Thomsen BS, Tvede N, et al. Malignancies in Wegener’s granulomatosis: incidence and relation to cyclophosphamide therapy in a cohort of 293 patients. J Rheumatol [Internet]. 2008;35(1):100–5. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17937462
80. Ponticelli C, Altieri P, Scolari F, Passerini P, Roccatello D, Cesana B, et al. A randomized study comparing methylprednisolone plus chlorambucil versus methylprednisolone plus cyclophosphamide in idiopathic membranous nephropathy. J Am Soc Nephrol [Internet]. 1998;9(3):444–50. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9513907
81. Ponticelli C, Zucchelli P, Passerini P, Cagnoli L, Cesana B, Pozzi C, et al. A randomized trial of methylprednisolone and chlorambucil in idiopathic membranous nephropathy. N Engl J Med [Internet]. 1989;320(1):8–13. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2642605
82. Jha V, Ganguli A, Saha TK, Kohli HS, Sud K, Gupta KL, et al. A randomized, controlled trial of steroids and cyclophosphamide in adults with nephrotic syndrome caused by idiopathic membranous nephropathy. J Am Soc Nephrol [Internet]. 2007;18(6):1899–904. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17494881
83. Gea-Banacloche JC. Rituximab-associated infections. Semin Hematol [Internet]. 2010;47(2):187–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20350666
84. Lanini S, Molloy AC, Fine PE, Prentice AG, Ippolito G, Kibbler CC. Risk of infection in patients with lymphoma receiving rituximab: systematic review and meta-analysis. BMC Med [Internet]. 2011;9:36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21481281
85. Tan CS, Koralnik IJ. Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol [Internet]. 2010;9(4):425–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20298966
86. van Vollenhoven RF, Fleischmann RM, Furst DE, Lacey S, Lehane PB. Longterm Safety of Rituximab: Final Report of the Rheumatoid Arthritis Global Clinical Trial Program over 11 Years. J Rheumatol [Internet]. 2015;42(10):1761–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26276965
87. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin [Internet]. 2006;56(2):106–30. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16514137
88. Md Yusof MY, Vital EM, McElvenny DM, Hensor EMA, Das S, Dass S, et al. Predicting Severe Infection and Effects of Hypogammaglobulinemia During Therapy With Rituximab in Rheumatic and Musculoskeletal Diseases. Arthritis Rheumatol Hoboken NJ. 2019 Nov;71(11):1812–23.
89. Reddy V, Martinez L, Isenberg DA, Leandro MJ, Cambridge G. Pragmatic Treatment of Patients With Systemic Lupus Erythematosus With Rituximab: Long-Term Effects on Serum Immunoglobulins. Arthritis Care Res. 2017 Jun;69(6):857–66.
90. Trivin C, Tran A, Moulin B, Choukroun G, Gatault P, Courivaud C, et al. Infectious complications of a rituximab-based immunosuppressive regimen in patients with glomerular disease. Clin Kidney J. 2017 Aug;10(4):461–9.
91. Kridin K, Ahmed AR. Post-rituximab immunoglobulin M (IgM) hypogammaglobulinemia. Autoimmun Rev. 2020 Mar;19(3):102466.
92. van den Brand J, Ruggenenti P, Chianca A, Hofstra JM, Perna A, Ruggiero B, et al. Safety of Rituximab Compared with Steroids and Cyclophosphamide for Idiopathic Membranous Nephropathy. J Am Soc Nephrol [Internet]. 2017;28(9):2729–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28487395
93. Fervenza FC, Appel GB, Barbour SJ, Rovin BH, Lafayette RA, Aslam N, et al. Rituximab or Cyclosporine in the Treatment of Membranous Nephropathy. N Engl J Med. 2019 Jul 4;381(1):36–46.
94. van den Brand JA, van Dijk PR, Hofstra JM, Wetzels JF. Long-term outcomes in idiopathic membranous nephropathy using a restrictive treatment strategy. J Am Soc Nephrol [Internet]. 2014;25(1):150–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24029426
95. van den Brand JA, van Dijk PR, Hofstra JM, Wetzels JF. Cancer risk after cyclophosphamide treatment in idiopathic membranous nephropathy. Clin J Am Soc Nephrol [Internet]. 2014;9(6):1066–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24855280
96. Heijl C, Harper L, Flossmann O, Stucker I, Scott DG, Watts RA, et al. Incidence of malignancy in patients treated for antineutrophil cytoplasm antibody-associated vasculitis: follow-up data from European Vasculitis Study Group clinical trials. Ann Rheum Dis [Internet]. 2011;70(8):1415–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21616914
97. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. Guideline for Good Clinical Practice E6(R1). http://wwwichorg/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E6_R1/Step4/E6_R1__Guidelinepdf (June 10, 1996) (accessed February 23, 2017). (December 20, 2016). Available from: http://wwwichorg/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E6_R1/Step4/E6_R1__Guidelinepdf (June 10, 1996)
98. Podestà MA, Ruggiero B, Remuzzi G, Ruggenenti P. Ofatumumab for multirelapsing membranous nephropathy complicated by rituximab-induced serum-sickness. BMJ Case Rep. 2020 Jan 23;13(1):e232896.
99. Marasa M, Cravedi P, Ruggiero B, Ruggenenti P. Refractory focal segmental glomerulosclerosis in the adult: complete and sustained remissions of two episodes of nephrotic syndrome after a single dose of rituximab. BMJ Case Rep [Internet]. 2014;2014. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25155494
100. Ruggenenti P, Cravedi P, Remuzzi G. Rituximab for membranous nephropathy and immune disease: less might be enough. Nat Clin Pr Nephrol [Internet]. 2009;5(2):76–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19048001
101. Gabardi S, Martin ST, Roberts KL, Grafals M. Induction immunosuppressive therapies in renal transplantation. Am J Health Syst Pharm [Internet]. 2011;68(3):211–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21258026
102. Pepper R, Griffith M, Kirwan C, Levy J, Taube D, Pusey C, et al. Rituximab is an effective treatment for lupus nephritis and allows a reduction in maintenance steroids. Nephrol Dial Transpl [Internet]. 2009;24(12):3717–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19617257
103. Cravedi P, Ruggenenti P, Sghirlanzoni MC, Remuzzi G. Titrating rituximab to circulating B cells to optimize lymphocytolytic therapy in idiopathic membranous nephropathy. Clin J Am Soc Nephrol [Internet]. 2007;2(5):932–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17702725
104. Agenzia Italiana del Farmaco.
105. Drug “Cyclophosphamide” Price list. http://www.medindia.net/drug-price/cyclophosphamide.htm.
106. Dialysis Costs. http://www.asst-pg23.it/component/trasparenza/12.
107. KDIGO Clinical Practice Guidelines for Glomerulonephritis. Chapter 7: Idiopathic membranous nephropathy. Kidney Int Suppl 2011 [Internet]. 2012;2(2):186–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25018932
108. Tacrolimus. https://www.goodrx.com/tacrolimus.
109. Cattran DC, Appel GB, Hebert LA, Hunsicker LG, Pohl MA, Hoy WE, et al. Cyclosporine in patients with steroid-resistant membranous nephropathy: a randomized trial. Kidney Int [Internet]. 2001;59(4):1484–90. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11260412
110. Praga M, Barrio V, Juarez GF, Luno J. Tacrolimus monotherapy in membranous nephropathy: a randomized controlled trial. Kidney Int [Internet]. 2007;71(9):924–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17377504
111. Hofstra JM, Fervenza FC, Wetzels JF. Treatment of idiopathic membranous nephropathy. Nat Rev Nephrol [Internet]. 2013;9(8):443–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23820815
112. Kalliakmani P, Koutroulia E, Sotsiou F, Vlachojannis JG, Goumenos DS. Benefit and cost from the long-term use of cyclosporine-A in idiopathic membranous nephropathy. Nephrol Carlton [Internet]. 2010;15(8):762–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21175962
113. Dahan K, Debiec H, Plaisier E, Cachanado M, Rousseau A, Wakselman L, et al. Rituximab for Severe Membranous Nephropathy: A 6-Month Trial with Extended Follow-Up. J Am Soc Nephrol [Internet]. 2017;28(1):348–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27352623
114. Ruggenenti P, Mise N, Pisoni R, Arnoldi F, Pezzotta A, Perna A, et al. Diverse effects of increasing lisinopril doses on lipid abnormalities in chronic nephropathies. Circulation [Internet]. 2003;107(4):586–92. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12566371
115. Cravedi P. Rituximab in Membranous Nephropathy: Not All Studies Are Created Equal. Nephron [Internet]. 2017;135(1):46–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27676651
116. Bomback AS, Derebail VK, McGregor JG, Kshirsagar AV, Falk RJ, Nachman PH. Rituximab therapy for membranous nephropathy: a systematic review. Clin J Am Soc Nephrol [Internet]. 2009;4(4):734–44. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19279120
117. Ruggenenti P, Remuzzi G. A First Step toward a New Approach to Treating Membranous Nephropathy. N Engl J Med. 2019 Jul 4;381(1):86–8.
118. Scolari F, Delbarba E, Santoro D, Gesualdo L, Pani A, Dallera N, et al. Rituximab or Cyclophosphamide in the Treatment of Membranous Nephropathy: The RI-CYCLO Randomized Trial. J Am Soc Nephrol JASN. 2021 Mar 1;32(4):972–82.
119. Fernández-Juárez G, Rojas-Rivera J, Logt AE van de, Justino J, Sevillano A, Caravaca-Fontán F, et al. The STARMEN trial indicates that alternating treatment with corticosteroids and cyclophosphamide is superior to sequential treatment with tacrolimus and rituximab in primary membranous nephropathy. Kidney Int. 2021 Apr;99(4):986–98.
120. Moroni G, Gallelli B, Quaglini S, Leoni A, Banfi G, Passerini P, et al. Long-term outcome of renal transplantation in patients with idiopathic membranous glomerulonephritis (MN). Nephrol Dial Transpl [Internet]. 2010;25(10):3408–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20466669
121. Dabade TS, Grande JP, Norby SM, Fervenza FC, Cosio FG. Recurrent idiopathic membranous nephropathy after kidney transplantation: a surveillance biopsy study. Am J Transpl [Internet]. 2008;8(6):1318–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18444918
122. El-Zoghby ZM, Grande JP, Fraile MG, Norby SM, Fervenza FC, Cosio FG. Recurrent idiopathic membranous nephropathy: early diagnosis by protocol biopsies and treatment with anti-CD20 monoclonal antibodies. Am J Transpl [Internet]. 2009;9(12):2800–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19845581
123. Marcen R, Mampaso F, Teruel JL, Rivera ME, Orofino L, Navarro-Antolin J, et al. Membranous nephropathy: recurrence after kidney transplantation. Nephrol Dial Transpl [Internet]. 1996;11(6):1129–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8671981
124. Poduval RD, Josephson MA, Javaid B. Treatment of de novo and recurrent membranous nephropathy in renal transplant patients. Semin Nephrol [Internet]. 2003;23(4):392–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12923728
125. Rodriguez EF, Cosio FG, Nasr SH, Sethi S, Fidler ME, Stegall MD, et al. The pathology and clinical features of early recurrent membranous glomerulonephritis. Am J Transpl [Internet]. 2012;12(4):1029–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22233329
126. Grupper A, Cornell LD, Fervenza FC, Beck LH Jr, Lorenz E, Cosio FG. Recurrent Membranous Nephropathy After Kidney Transplantation: Treatment and Long-Term Implications. Transplantation [Internet]. 2016;100(12):2710–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26720301
127. Kattah A, Ayalon R, Beck LH Jr, Sethi S, Sandor DG, Cosio FG, et al. Anti-phospholipase A(2) receptor antibodies in recurrent membranous nephropathy. Am J Transpl [Internet]. 2015;15(5):1349–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25766759
128. Quintana LF, Blasco M, Seras M, Perez NS, Lopez-Hoyos M, Villarroel P, et al. Antiphospholipase A2 Receptor Antibody Levels Predict the Risk of Posttransplantation Recurrence of Membranous Nephropathy. Transplantation [Internet]. 2015;99(8):1709–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25675198
129. El-Zoghby ZM, Stegall MD, Lager DJ, Kremers WK, Amer H, Gloor JM, et al. Identifying specific causes of kidney allograft loss. Am J Transpl [Internet]. 2009;9(3):527–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19191769
130. Sellares J, de Freitas DG, Mengel M, Reeve J, Einecke G, Sis B, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transpl [Internet]. 2012;12(2):388–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22081892
131. Vivarelli M, Colucci M, Bonanni A, Verzani M, Serafinelli J, Emma F, et al. Ofatumumab in two pediatric nephrotic syndrome patients allergic to rituximab. Pediatr Nephrol [Internet]. 2017;32(1):181–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27687621
132. Boyer-Suavet S, Andreani M, Lateb M, Savenkoff B, Brglez V, Benzaken S, et al. Neutralizing Anti-Rituximab Antibodies and Relapse in Membranous Nephropathy Treated With Rituximab. Front Immunol. 2019;10:3069.
133. Uchiyama S, Suzuki Y, Otake K, Yokoyama M, Ohta M, Aikawa S, et al. Development of novel humanized anti-CD20 antibodies based on affinity constant and epitope. Cancer Sci [Internet]. 2010;101(1):201–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19930155
134. Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today [Internet]. 1994;15(9):450–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7524522
135. Grillo-Lopez AJ. Rituximab (Rituxan/MabThera): the first decade (1993-2003). Expert Rev Anticancer Ther [Internet]. 2003;3(6):767–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14686699
136. Salama AD, Pusey CD. Drug insight: rituximab in renal disease and transplantation. Nat Clin Pr Nephrol [Internet]. 2006;2(4):221–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16932428
137. Jain P, O’Brien S. Anti-CD20 monoclonal antibodies in chronic lymphocytic leukemia. Expert Opin Biol Ther [Internet]. 2013;13(2):169–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23256681
138. van Imhoff GW, McMillan A, Matasar MJ, Radford J, Ardeshna KM, Kuliczkowski K, et al. Ofatumumab Versus Rituximab Salvage Chemoimmunotherapy in Relapsed or Refractory Diffuse Large B-Cell Lymphoma: The ORCHARRD Study. J Clin Oncol [Internet]. 2016;JCO2016690198. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28029326
139. Cang S, Mukhi N, Wang K, Liu D. Novel CD20 monoclonal antibodies for lymphoma therapy. J Hematol Oncol [Internet]. 2012;5:64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23057966
140. Robak T, Robak E. New anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoid malignancies. BioDrugs [Internet]. 2011;25(1):13–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21090841
141. Wierda WG, Padmanabhan S, Chan GW, Gupta IV, Lisby S, Osterborg A. Ofatumumab is active in patients with fludarabine-refractory CLL irrespective of prior rituximab: results from the phase 2 international study. Blood [Internet]. 2011;118(19):5126–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21856867
142. Taylor PC, Quattrocchi E, Mallett S, Kurrasch R, Petersen J, Chang DJ. Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann Rheum Dis [Internet]. 2011;70(12):2119–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21859685
143. Basu B. Ofatumumab for rituximab-resistant nephrotic syndrome. N Engl J Med [Internet]. 2014;370(13):1268–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24670185
144. Kamburova EG, Koenen HJPM, Borgman KJE, ten Berge IJ, Joosten I, Hilbrands LB. A single dose of rituximab does not deplete B cells in secondary lymphoid organs but alters phenotype and function. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2013 Jun;13(6):1503–11.
145. Crickx E, Chappert P, Sokal A, Weller S, Azzaoui I, Vandenberghe A, et al. Rituximab-resistant splenic memory B cells and newly engaged naive B cells fuel relapses in patients with immune thrombocytopenia. Sci Transl Med. 2021 Apr 14;13(589):eabc3961.
146. Sabiu G, Podestà MA. Membranous Nephropathy: It Is Time to Go Back to the Future. Nephron. 2021;145(6):721–7.
147. Mei HE, Wirries I, Frolich D, Brisslert M, Giesecke C, Grun JR, et al. A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood [Internet]. 2015;125(11):1739–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25573986
148. Redfield RR, Jordan SC, Busque S, Vincenti F, Woodle ES, Desai N, et al. Safety, pharmacokinetics, and pharmacodynamic activity of obinutuzumab, a type 2 anti-CD20 monoclonal antibody for the desensitization of candidates for renal transplant. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2019 Nov;19(11):3035–45.
149. Lim SH, Vaughan AT, Ashton-Key M, Williams EL, Dixon SV, Chan HTC, et al. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood. 2011 Sep 1;118(9):2530–40.
150. Casan JML, Wong J, Northcott MJ, Opat S. Anti-CD20 monoclonal antibodies: reviewing a revolution. Hum Vaccines Immunother. 2018;14(12):2820–41.
151. Liu SD, Chalouni C, Young JC, Junttila TT, Sliwkowski MX, Lowe JB. Afucosylated antibodies increase activation of FcγRIIIa-dependent signaling components to intensify processes promoting ADCC. Cancer Immunol Res. 2015 Feb;3(2):173–83.
152. Kaegi C, Wuest B, Crowley C, Boyman O. Systematic Review of Safety and Efficacy of Second- and Third-Generation CD20-Targeting Biologics in Treating Immune-Mediated Disorders. Front Immunol. 2021;12:788830.
153. Teisseyre M, Boyer-Suavet S, Crémoni M, Brglez V, Esnault V, Seitz-Polski B. Analysis and Management of Rituximab Resistance in PLA2R1-Associated Membranous Nephropathy. Kidney Int Rep. 2021 Apr;6(4):1183–8.
154. Hudson R, Rawlings C, Mon SY, Jefferis J, John GT. Treatment resistant M-type phospholipase A2 receptor associated membranous nephropathy responds to obinutuzumab: a report of two cases. BMC Nephrol. 2022 Apr 7;23(1):134.
155. Klomjit N, Fervenza FC, Zand L. Successful Treatment of Patients With Refractory PLA2R-Associated Membranous Nephropathy With Obinutuzumab: A Report of 3 Cases. Am J Kidney Dis Off J Natl Kidney Found. 2020 Dec;76(6):883–8.
156. Sethi S, Kumar S, Lim K, Jordan SC. Obinutuzumab is Effective for the Treatment of Refractory Membranous Nephropathy. Kidney Int Rep. 2020 Sep;5(9):1515–8.
157. Barrett C, Willcocks LC, Jones RB, Tarzi RM, Henderson RB, Cai G, et al. Effect of belimumab on proteinuria and anti-phospholipase A2 receptor autoantibody in primary membranous nephropathy. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2020 Apr 1;35(4):599–606.
158. Gong Q, Ou Q, Ye S, Lee WP, Cornelius J, Diehl L, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol [Internet]. 2005;174(2):817–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15634903
159. Hiepe F, Radbruch A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat Rev Nephrol [Internet]. 2016;12(4):232–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26923204
160. Barbari A, Chehadi R, Kfoury Assouf H, Kamel G, Jaafar M, Abdallah A, et al. Bortezomib as a Novel Approach to Early Recurrent Membranous Glomerulonephritis After Kidney Transplant Refractory to Combined Conventional Rituximab Therapy. Exp Clin Transplant Off J Middle East Soc Organ Transplant. 2017 Jun;15(3):350–4.
161. Hiepe F, Dorner T, Hauser AE, Hoyer BF, Mei H, Radbruch A. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol [Internet]. 2011;7(3):170–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21283146
162. van de Donk NW, Janmaat ML, Mutis T, Lammerts van Bueren JJ, Ahmadi T, Sasser AK, et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev [Internet]. 2016;270(1):95–112. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26864107
163. Nooka AK, Kaufman JL, Hofmeister CC, Joseph NS, Heffner TL, Gupta VA, et al. Daratumumab in multiple myeloma. Cancer. 2019 Jul 15;125(14):2364–82.
164. Musto P, La Rocca F. Monoclonal antibodies in relapsed/refractory myeloma: updated evidence from clinical trials, real-life studies, and meta-analyses. Expert Rev Hematol. 2020 Apr;13(4):331–49.
165. van de Donk NWCJ, Richardson PG, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018 Jan 4;131(1):13–29.
166. Vink CH, van Cranenbroek B, van der Heijden JW, Koenen HPJM, Wetzels JFM. Daratumumab for multidrug-resistant phospholipase-A2 receptor-related membranous nephropathy. Kidney Int. 2022 Mar;101(3):646–7.
167. Benoit SW, Khandelwal P, Grimley MS. A case of treatment-resistant membranous nephropathy associated with graft versus host disease successfully treated with daratumumab. Pediatr Transplant. 2022 Jun;26(4):e14263.
168. Stehlé T, Grimbert P, Remy P, Moktefi A, Audard V, El Karoui K. Anti-CD38 therapy for PLA2R-positive membranous nephropathy resistant to conventional immunosuppression. Kidney Int. 2022 Feb;101(2):416–8.
169. Raab MS, Engelhardt M, Blank A, Goldschmidt H, Agis H, Blau IW, et al. MOR202, a novel anti-CD38 monoclonal antibody, in patients with relapsed or refractory multiple myeloma: a first-in-human, multicentre, phase 1-2a trial. Lancet Haematol. 2020 May;7(5):e381–94.
170. Tawara T, Hasegawa K, Sugiura Y, Harada K, Miura T, Hayashi S, et al. Complement activation plays a key role in antibody-induced infusion toxicity in monkeys and rats. J Immunol Baltim Md 1950. 2008 Feb 15;180(4):2294–8.
171. van de Donk NWCJ, Moreau P, Plesner T, Palumbo A, Gay F, Laubach JP, et al. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma. Blood. 2016 Feb 11;127(6):681–95.
172. Rovin BH, Boxhammer R, Thakur A, Ronco PM. Immunologic Responses After COVID-19 Vaccination in Patients With Membranous Nephropathy Receiving Anti-CD38 Felzartamab Therapy: Results From the Phase 1b/2a M-PLACE Study. Kidney Int Rep. 2022 Sep;7(9):2086–90.
173. Meister S, Schubert U, Neubert K, Herrmann K, Burger R, Gramatzki M, et al. Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res [Internet]. 2007;67(4):1783–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17308121
174. Hartono C, Chung M, Kuo SF, Seshan SV, Muthukumar T. Bortezomib therapy for nephrotic syndrome due to idiopathic membranous nephropathy. J Nephrol [Internet]. 2014;27(1):103–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24430762
175. Salhi S, Ribes D, Colombat M, Fortenfant F, Faguer S. Bortezomib plus dexamethasone for rituximab-resistant PLA2R+ membranous nephropathy. Kidney Int. 2021 Sep;100(3):708–9.
176. Cunningham PN, Quigg RJ. Contrasting roles of complement activation and its regulation in membranous nephropathy. J Am Soc Nephrol JASN. 2005 May;16(5):1214–22.
177. Ayoub I, Shapiro JP, Song H, Zhang XL, Parikh S, Almaani S, et al. Establishing a Case for Anti-complement Therapy in Membranous Nephropathy. Kidney Int Rep. 2021 Feb;6(2):484–92.
178. Teisseyre M, Beyze A, Perrochia H, Szwarc I, Bourgeois A, Champion C, et al. C5b-9 Glomerular Deposits Are Associated With Poor Renal Survival in Membranous Nephropathy. Kidney Int Rep [Internet]. 2023 Jan 1 [cited 2023 Jan 10];8(1):103–14. Available from: https://www.kireports.org/article/S2468-0249(22)01820-4/fulltext
179. Hsu SI, Couser WG. Chronic progression of tubulointerstitial damage in proteinuric renal disease is mediated by complement activation: a therapeutic role for complement inhibitors? J Am Soc Nephrol [Internet]. 2003;14(7 Suppl 2):S186-91. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12819326
180. Tang S, Lai KN, Sacks SH. Role of complement in tubulointerstitial injury from proteinuria. Kidney Blood Press Res [Internet]. 2002;25(2):120–6. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12077496
181. Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007 Nov;25(11):1256–64.
182. Wong EKS, Goodship THJ, Kavanagh D. Complement therapy in atypical haemolytic uraemic syndrome (aHUS). Mol Immunol. 2013 Dec 15;56(3):199–212.
183. Gao S, Cui Z, Zhao MH. Complement C3a and C3a Receptor Activation Mediates Podocyte Injuries in the Mechanism of Primary Membranous Nephropathy. J Am Soc Nephrol JASN. 2022 Jul 1;33(9):1742–56.
184. Debiec H, Ronco P. Immune Response against Autoantigen PLA2R Is not Gambling: Implications for Pathophysiology, Prognosis, and Therapy. J Am Soc Nephrol [Internet]. 2016;27(5):1275–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26657866
185. Ma H, Sandor DG, Beck LH Jr. The role of complement in membranous nephropathy. Semin Nephrol [Internet]. 2013;33(6):531–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24161038
186. Takano T, Elimam H, Cybulsky AV. Complement-mediated cellular injury. Semin Nephrol [Internet]. 2013;33(6):586–601. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24161043
187. Schubart A, Anderson K, Mainolfi N, Sellner H, Ehara T, Adams CM, et al. Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proc Natl Acad Sci U A. 2019 Apr 16;116(16):7926–31.
188. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018 Mar 23;359(6382):1361–5.
189. Kansal R, Richardson N, Neeli I, Khawaja S, Chamberlain D, Ghani M, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci Transl Med. 2019 Mar 6;11(482):eaav1648.
190. Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science [Internet]. 2016;353(6295):179–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27365313
191. Rosenzwajg M, Languille E, Debiec H, Hygino J, Dahan K, Simon T, et al. B- and T-cell subpopulations in patients with severe idiopathic membranous nephropathy may predict an early response to rituximab. Kidney Int [Internet]. 2017;92(1):227–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28318628
192. Clemente-Casares X, Blanco J, Ambalavanan P, Yamanouchi J, Singha S, Fandos C, et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature. 2016 Feb 25;530(7591):434–40.
193. Teisseyre M, Cremoni M, Boyer-Suavet S, Ruetsch C, Graça D, Esnault VLM, et al. Advances in the Management of Primary Membranous Nephropathy and Rituximab-Refractory Membranous Nephropathy. Front Immunol. 2022;13:859419.
194. Popow I, Leitner J, Grabmeier-Pfistershammer K, Majdic O, Zlabinger GJ, Kundi M, et al. A comprehensive and quantitative analysis of the major specificities in rabbit antithymocyte globulin preparations. Am J Transpl [Internet]. 2013;13(12):3103–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24168235
195. Alexander T, Thiel A, Rosen O, Massenkeil G, Sattler A, Kohler S, et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood [Internet]. 2009;113(1):214–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18824594
196. Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med [Internet]. 2012;366(6):489–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22256780
197. Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 2021 Oct;100(4):753–79.
198. Cattran DC, Pei Y, Greenwood CM, Ponticelli C, Passerini P, Honkanen E. Validation of a predictive model of idiopathic membranous nephropathy: its clinical and research implications. Kidney Int [Internet]. 1997;51(3):901–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9067928