Galectin-3 Expression Promotes Pulmonary Hypertension Through Multiple Mechanisms

Main Article Content

Scott A. Barman Stephen Haigh David J.R. Fulton

Abstract

Pulmonary Hypertension is a progressive vascular disease resulting from the tapering of pulmonary arteries causing high pulmonary arterial blood pressure and ultimately right ventricular failure. A defining characteristic of Pulmonary Hypertension is the excessive remodeling of pulmonary arteries that includes increased proliferation, vascular fibrosis and inflammation. There is no outward cure for Pulmonary Hypertension nor are there interventions that effectively impede or reverse pulmonary arterial remodeling, and pulmonary vascular research over the past several decades has sought to identify novel molecular mechanisms to target for therapeutic benefit. Galectin-3 is a carbohydrate binding lectin that is unique for its chimeric structure, comprised of an N-terminal oligomerization domain and a C-terminal carbohydrate-recognition domain. Galectin-3 is a regulator of modifications in cell behavior that contribute to aberrant pulmonary arterial remodeling including cell proliferation, inflammation, and fibrosis, but its role in Pulmonary Hypertension is poorly understood. In this review, we define Galectin-3 and summarize specific topics regarding the role of Galectin-3 expression in the development of Pulmonary Hypertension by providing evidence which supports the ability of Galectin-3 to influence reactive oxygen species production, NADPH enzyme expression, vascular inflammation and vascular fibrosis, all phenomena which contribute to pulmonary arterial remodeling and the development of Pulmonary Hypertension.


 

Article Details

How to Cite
BARMAN, Scott A.; HAIGH, Stephen; FULTON, David J.R.. Galectin-3 Expression Promotes Pulmonary Hypertension Through Multiple Mechanisms. Medical Research Archives, [S.l.], v. 11, n. 4, apr. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3621>. Date accessed: 29 mar. 2024. doi: https://doi.org/10.18103/mra.v11i4.3621.
Section
Research Articles

References

1 Galiè N, Humbert M, Vachiery JL et al .GESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J.. 2015;37:67-119. doi:10.1093/eurheartj/ehv317 (2016).
2. Coons JC, Pogue K, Kolodziej AR, Hirsch GA, George MP. Pulmonary arterial hypertension: a pharmacotherapeutic update. Curr Cardiol Rep. 2019;21:141. doi: 10.1007/s11886-019-1235-4.
3 Fulton, RM, Hutchinson, EC, Jones, AM. Ventricular weight in cardiac hypertrophy. Br Heart J.1952; 14:413-420. doi: 10.1136/hrt.14.3.413
4 Houssaini A, Abid S, Mouraret N et al. Rapamycin reverses pulmonary artery smooth muscle cell proliferation in pulmonary hypertension. Am J Respir Cell Mol Biol. 2013;48:568-577. doi:10.1165/rcmb.2012-0429OC (2013).
5 Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling. Physiology. 2006; 21:134-145. doi:21/2/134 [pii]10.1152/physiol.00053.2005 (2006).
6 Stenmark KR Meyrick B, Galie N, Mooi WJ, McMurtry, IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol. 2009;297:L1013-1032. doi:10.1152/ajplung.00217.2009 (2009).
7 Hassoun PM, Mouthon L, Barberà JA et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009;54:S10-19. doi:10.1016/j.jacc.2009.04.006 (2009).
8 Todorovich-Hunter L, Johnson DJ, Ranger P, Keeley FW, Rabinovitch M. Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline. A biochemical and ultrastructural study. Lab Invest. 1988;58:184-195 .
9 Rabinovitch M. Pathobiology of pulmonary hypertension. Annu Rev Pathol. 2007;2:369-399. doi:10.1146/annurev.pathol.2.010506.092033 (2007).
10 Milnor WR. Arterial impedance as ventricular afterload. Circ Res. 1975;36:565-570. doi: 10.1161/01.res.36.5.565
11 Vonk-Noordegraaf A, Haddad F, Chin KM et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62:D22-33. doi:10.1016/j.jacc.2013.10.027 (2013).
12 Fenster BE, Lasalvia L, Schroeder JD et al. Galectin-3 levels are associated with right ventricular functional and morphologic changes in pulmonary arterial hypertension. Heart Vessels. 2016;31:939-946. doi:10.1007/s00380-015-0691-z (2016).
13 van Wolferen SA, Marcus JT, Boonstra A et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28:1250-1257. doi:10.1093/eurheartj/ehl477 (2007).
14 Benza RL, Miller DP, Gomberg-Maitland M et al. Predicting survival in pulmonary arterial hypertension: insights from the registry to evaluate early and long- term pulmonary arterial hypertension disease management (REVEAL). Circulation. 2010;122:164-172. doi:10.1161/circulationaha.109.898122 (2010).
15 Girgis RE. Predicting long-term survival in pulmonary arterial hypertension: more than just pulmonary vascular resistance. J Am Coll Cardiol. 2011:58:2520-2521. doi:10.1016/j.jacc.2011.09.018 (2011).
16 Humbert M, Morrell NW, Archer SL. et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004; 43:13S-24S. doi:10.1016/j.jacc.2004.02.029 S0735109704004383 [pii] (2004).
17 Otsuki S, Sawada H, Yodoya N et al. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS One. 2015;10. doi:10.1371/journal.pone.0118655 (2015).
18 Voelkel NF, Tuder RM. Cellular and molecular mechanisms in the pathogenesis of severe pulmonary hypertension. Eur Respir J. 1995; 8:2129-2138. doi: 10.1183/09031936.95.08122129.
19 Morrell NW, Yang X, Upton PD. et al. Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-beta(1) and bone morphogenetic proteins. Circulation. 2001;104:790-795. doi: 10.1161/hc3201.094152
20 Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet. 2003;361:1533-1544. doi:10.1016/s0140-6736(03)13167-4 (2003).
21 Perros F, Dorfmüller P, Souza R et al. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur Respir J. 2007;29:462-468. doi:10.1183/09031936.00094706 (2007).
22 Schafer M, Myers C, Brown RD. et al. Pulmonary arterial stiffness: toward a new paradigm in pulmonary arterial hypertension pathophysiology and assessment. Curr Hypertens Rep 2016;18:4. doi:10.1007/s11906-015-0609-2 (2016).
23 Di Lella S, Sundblad V, Cerliani JP et al. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry. 2011;50:7842-7857. doi:10.1021/bi201121m (2011).
24 Roff CF, Wang JL. Endogenous lectins from cultured cells. Isolation and characterization of carbohydrate-binding proteins from 3T3 fibroblasts. J Biol Chem. 1983;258:10657-10663.
25 Crittenden SL, Roff CF, Wang JL. Carbohydrate-binding protein 35: identification of the galactose-specific lectin in various tissues of mice. Mol Cell Biol. 1984; 4:1252-1259 . doi: 10.1128/mcb.4.7.1252-1259.1984.
26 Jia S, Mee RP, Morford G et al. Carbohydrate-binding protein 35: molecular cloning and expression of a recombinant polypeptide with lectin activity in Escherichia coli. Gene. 1987; 60:197-204. doi: 10.1016/0378-1119(87)90228-9.
27 Moutsatsos IK, Wade M, Schindler M, Wang JL. Endogenous lectins from cultured cells: nuclear localization of carbohydrate-binding protein 35 in proliferating 3T3 fibroblasts. Proc Natl Acad Sci U S A. 1987; 84:6452-6456. doi: 10.1073/pnas.84.18.6452.
28 Cowles EA, Moutsatsos IK, Wang JL, Anderson, RL. Expression of carbohydrate binding protein 35 in human fibroblasts: comparisons between cells with different proliferative capacities. Exp Gerontol. 1989;24:577-585. doi: 10.1016/0531-5565(89)90061-2.
29 Cherayil BJ, Weiner SJ, Pillai S. The Mac-2 antigen is a galactose-specific lectin that binds IgE. J Exp Med. 1989;170:1959-1972. doi: 10.1084/jem.170.6.1959.
30 Woo HJ, Shaw LM, Messier JM, Mercurio AM. The major non-integrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35 (Mac-2). J Biol Chem. 1990; 265:7097-7099.
31 Nachtigal M, Al-Assaad Z, Mayer EP, Kim K, Monsigny M. Galectin-3 expression in human atherosclerotic lesions. Am J Pathol. 1998;152:1199-1208. doi:10.1016/S0002-9440(10)64959-0 (2000).
32 Arar C, Gaudin JC, Capron L, Legrand A. Galectin-3 gene (LGALS3) expression in experimental atherosclerosis and cultured smooth muscle cells. FEBS Lett.1998;430:307-311. doi: 10.1016/s0014-5793(98)00683-8.
33 Nangia-Makker P, Honjo Y, Sarvis R et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol. 2000;156:899-909. doi: 10.1016/S0002-9440(10)64959-0.
34 Joo HG, Goedegebuure PS, Sadanaga N et al. Expression and function of galectin-3, a beta-galactoside-binding protein in activated T lymphocytes. Journal of Leukoc Biol. 2001;69:555-564.
35 Huflejt ME, Turck CW, Lindstedt R, Barondes SH, Leffler H. L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. J Biol Chem. 1993;268:26712-26718 .
36 Kaltner H, Seyrek K, Heck A, Sinowatz F, Gabius HJ. Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts. Comparison of cell type-specific expression profiles and subcellular localization. Cell Tissue Res. 2002;307:35-46. doi:10.1007/s004410100457 (2002).
37 Lee EC, Woo HJ, Korzelius CA, Steele GD, Jr., Mercurio AM. Carbohydrate-binding protein 35 is the major cell-surface laminin-binding protein in colon carcinoma. Arch Surg. 1991;126:1498-1502. doi: 10.1001/archsurg.1991.01410360072011.
38 Woo HJ, Lotz MM, Jung JU, Mercurio AM. Carbohydrate-binding protein 35 (Mac-2), a laminin-binding lectin, forms functional dimers using cysteine 186. J Biol Chem. 1991; 266:18419-18422 .
39 Halimi H, Rigato A, Byrne D et al. Glycan dependence of Galectin-3 self-association properties. PLoS One. 2014; 9. doi:10.1371/journal.pone.0111836 (2014).
40 Lepur A, Salomonsson E, Nilsson UJ, Leffler H. Ligand induced galectin-3 protein self-association. J Biol Chem. 2012; 287, 21751-21756. doi:10.1074/jbc.C112.358002 (2012).
41 Ippel H, Miller MC, Vértesy S et al. Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR. Glycobiology. 2016;26:888-903. doi:10.1093/glycob/cww021 (2016).
42 Sundqvist M, Welin A, Elmwall J et al. Galectin-3 type-C self-association on neutrophil surfaces; The carbohydrate recognition domain regulates cell function. J Leukoc Biol. 2018;103:341-353. doi:10.1002/jlb.3a0317-110r (2018).
43 Mehul B, Bawumia S, Hughes RC. Cross-linking of galectin 3, a galactose-binding protein of mammalian cells, by tissue-type transglutaminase. FEBS Lett. 1995; 360:160-164. doi: 10.1016/0014-5793(95)00100-n.
44 van den Brule FA, Liu FT, Castronovo V. Transglutaminase-mediated oligomerization of galectin-3 modulates human melanoma cell interactions with laminin. Cell Adhes Commun. 1998; 5:425-435.
45 Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A. Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res. 1997; 57:5272-5276.
46 Sato S, Burdett I, Hughes RC. Secretion of the baby hamster kidney 30-kDa galactose-binding lectin from polarized and nonpolarized cells: a pathway independent of the endoplasmic reticulum-Golgi complex. Exp Cell Res. 1993;207:8-18. doi:10.1006/excr.1993.1157 (1993).
47 Stewart SE, Menzies SA, Popa SJ et al. A genome-wide CRISPR screen reconciles the role of N-linked glycosylation in galectin-3 transport to the cell surface. J Cell Sci. 2017;130:3234-3247. doi:10.1242/jcs.206425 (2017).
48 Lukyanov P, Furtak V, Ochieng J. Galectin-3 interacts with membrane lipids and penetrates the lipid bilayer. Biochem Biophys Res Commun. 2005;338:1031-1036. doi:10.1016/j.bbrc.2005.10.033 (2005).
49 Ochieng J, Green B, Evans S., James O, Warfield P. Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochim Biophys Acta. 1998;1379:97-106. doi: 10.1006/bbrc.1998.8708.
50 Balan V, Nangia-Makker P, Kho DH, Wang Y, Raz, A. Tyrosine-phosphorylated galectin-3 protein is resistant to prostate-specific antigen (PSA) cleavage. J Biol Chem. 2012; 287:5192-5198. doi:10.1074/jbc.C111.331686 (2012).
51 Balan V, Nangia-Makker P, Jung YS, Wang Y, Raz A. Galectin-3: A novel substrate for c-Abl kinase. Biochim Biophys Acta. 2010;1803:1198-1205. doi:10.1016/j.bbamcr.2010.06.007 (2010).
52 Takenaka Y, Fukumori T, Yoshii T et al. Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol. 2004;24:4395-4406. doi: 10.1128/MCB.24.10.4395-4406.2004.
53 Yoshii T, Fukumori T, Honjo Y, Inohara H, Kim HR, Raz A. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem. 2002;277:6852-6857. doi:10.1074/jbc.M107668200 (2002).
54 Gao X, Liu J, Liu X, Li L, Zheng, J. Cleavage and phosphorylation: important post-translational modifications of galectin-3. Cancer Metastasis Rev. 2017;36:367-374. doi:10.1007/s10555-017-9666-0 (2017).
55 Dagher SF, Wang, JL, Patterson RJ. Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci U S A. 1995;92:1213-1217. doi: 10.1073/pnas.92.4.1213.
56 Inohara H, Akahani S, Raz A. Galectin-3 stimulates cell proliferation. Exp Cell Res. 1998; 245:294-302. doi:S0014-4827(98)94253-7 [pii] 10.1006/excr.1998.4253 (1998).
57 Henderson NC, Mackinnon AC, Farnworth SL et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A. 2006;103:5060-5065. doi:0511167103 [pii] 10.1073/pnas.0511167103 (2006).
58 Henderson NC, Mackinnon AC, Farnworth SL et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 2008;172:288-298. doi:10.2353/ajpath.2008.070726 S0002-9440(10)61796-8 [pii] (2008).
59 Calvier L, Miana M, Reboul P, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33:67-75. doi:10.1161/ATVBAHA.112.300569 (2013).
60 Yu LG. Circulating galectin-3 in the bloodstream: An emerging promoter of cancer metastasis. World J Gastrointest Oncol. 2010;2:177-180. doi:10.4251/wjgo.v2.i4.177 (2010).
61 Lurisci I, Tinari N, Natoli C, Angelucci D, Chianchetti E, Lacobelli S. Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin cancer Res. 2000;6:1389-1393.
62 Papaspyridonos M, McNeill E, de Bono JP et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol. 2008; 28:433-440. doi:10.1161/ATVBAHA.107.159160 (2008).
63 Neidhart M, Zaucke F, von Knoch R et al. Galectin-3 is induced in rheumatoid arthritis synovial fibroblasts after adhesion to cartilage oligomeric matrix protein. Ann Rheum Dis. 2005;64:419-424. doi:10.1136/ard.2004.023135 ard.2004.023135 [pii] (2005).
64 Harrison SA, Marri SR, Chalasani N et al. Randomised clinical study: GR-MD-02, a galectin-3 inhibitor, vs. placebo in patients having non-alcoholic steatohepatitis with advanced fibrosis. Aliment Pharmacol Ther. 2016; 44:1183-1198. doi:10.1111/apt.13816 (2016).
65 Traber PG, Chou H, Zomer E et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One. 2013;8. doi:10.1371/journal.pone.0075361 PONE-D-13-22440 [pii] (2013).
66 Traber PG, ZomerE. Therapy of Experimental NASH and Fibrosis with Galectin Inhibitors. PLoS One. 2013; 8: doi:10.1371/journal.pone.0083481 PONE-D-13-37100 [pii] (2013).
67 Song X, Qian X, Shen M et al. Protein kinase C promotes cardiac fibrosis and heart failure by modulating galectin-3 expression. Biochim Biophys Acta. 2015;1853:513-521. doi:10.1016/j.bbamcr.2014.12.001 (2015).
68 Nishi Y, Sano H, Kawashima T et al. Role of galectin-3 in human pulmonary fibrosis. Allergol Int. 2007; 56:57-65. doi:10.2332/allergolint.O-06-449 (2007).
69 Calvier L, Legchenko E, Grimm L, et al. Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart. 2016;102:390-396. doi:10.1136/heartjnl-2015-308365 (2016).
70 Mazurek JA, Horne BD, Saeed W, Sardar MR, Zolty R. Galectin-3 levels are elevated and predictive of mortality in pulmonary hypertension. Heart Lung Circ. 2017;26:1208-1215. doi:10.1016/j.hlc.2016.12.012 (2017).
71 Agoston-Coldea L, Lupu S, Petrovai D, Mocan T, Mousseaux E. Correlations between echocardiographic parameters of right ventricular dysfunction and Galectin-3 in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Med Ultrason. 2015; 17:487-495. doi:10.11152/mu.2013.2066.174.ech (2015).
72 Beltrami M, Ruocco G, Dastidar AG et al. Additional value of Galectin-3 to BNP in acute heart failure patients with preserved ejection fraction. Clinica chimica acta. 2016;457:99-105. doi:10.1016/j.cca.2016.04.007 (2016).
73 French B, Wang L, Ky B et al. Prognostic value of galectin-3 for adverse outcomes in chronic heart failure. J Card Fail. 2016; 22:256-262. doi:10.1016/j.cardfail.2015.10.022 (2016).
74 Luo H, Liu B, Zhao L et al. Galectin-3 mediates pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension. J Am Soc of Hypertens. 2017;11:673-683. doi:10.1016/j.jash.2017.07.009 (2017).
75 Barman SA, Chen F, Li X et al. Galectin-3 promotes vascular remodeling and contributes to pulmonary hypertension. Am J Respir Crit Care Med. 2018;197:1488-1492. doi:10.1164/rccm.201711-2308LE (2018).
76 Kay J, M, Harris, P, Heath D. Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax. 1967;22:176-179. doi: 10.1136/thx.22.2.176.
77 Wilson DW, Segall HJ, Pan LC, Lamé MW, Estep JE, Morin D. Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit Rev Toxicol. 1992;22:307-325. doi:10.3109/10408449209146311 (1992).
78 Taraseviciene-Stewart L, Kasahara Y, Alger L et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 2001;15:427-438. doi:10.1096/fj.00-0343com 15/2/427 [pii] (2001).
79 Hao M, Li M, Li W. Galectin-3 inhibition ameliorates hypoxia-induced pulmonary artery hypertension. Mol Med Rep. 2017;15:160-168. doi:10.3892/mmr.2016.6020 (2017).
80 Madrigal-Matute J, Lindholt S, Fernandez Garcia et al. Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis. J Am Heart Assoc. 2014; 3. doi:10.1161/JAHA.114.000785 (2014).
81 Almkvist J, Faldt C, Dahlgren C, Leffler H, Karlsson A. Lipopolysaccharide-induced gelatinase granule mobilization primes neutrophils for activation by galectin-3 and formyl-methionyl-Leu-Phe. Infect Immun. 2001;69:832-837. doi: 10.1128/IAI.69.2.832-837.2001.
82 Suzuki Y, Inoue T, Yoshimara T, Ra C. Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochemica et Biphysica Acat. 2008;1783:924-934. doi:10.1016/j.bbamcr.2008.01.025 (2008).
83 Fort-Gallifa I, Hernandez-Aguilera A, Garcia-Heredia A et al. Galectin-3 in peripheral artery disease. Relationships with markers of oxidative stress and inflammation. Int J Mol Sci. 2017;18 973. doi:10.3390/ijms18050973 (2017).
84 Gao Z, Liu Z, Wang R, Zheng Y, Li H, Yang L. Galectin-3 is a potential mediator for atherosclerosis. J. Immunol Res. 2020;5:1-11. doi: 10.1155/2020/5284728.
85 Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871-882. doi:10.1016/j.cell.2010.02.029 (2010).
86 Dong S, Hughes RC. Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen). Glycoconj J. 1997; 14:267-274.
87 Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol. 2002;168:1813-1822. doi: 10.4049/jimmunol.168.4.1813.
88 Fermino ML, Polli CD, Toledo KA.. LPS-induced galectin-3 oligomerization results in enhancement of neutrophil activation. PLoS One. 2011;6. doi:10.1371/journal.pone.0026004 (2011).
89 Park AM, Hagiwara S, Hsu DK, Liu FT, Yoshie O. Galectin-3 Plays an Important Role in Innate Immunity to Gastric Infection by Helicobacter pylori. Infect Immun. 2016; 84,1184-1193. doi:10.1128/iai.01299-15 (2016).
90 da Silva AA, Teixeira TL, Teixeira SC et al. Galectin-3: A Friend but Not a Foe during Trypanosoma cruzi Experimental Infection. Front Cell Infect Microbiol. 2017;7:463. doi:10.3389/fcimb.2017.00463 (2017).
91 Diaz-Alvarez L, Ortega, E. The many roles of Galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediators Inflamm. 2017;2017:9247-9574. doi:10.1155/2017/9247574 (2017).
92 Hsu DK, Hammes SR, Kuwabara I, Greene,WC, Liu FT. Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol. 1996;148:1661-1670.
93 Frigeri LG, Zuberi RI, Liu FT. Epsilon BP, a beta-galactoside-binding animal lectin, recognizes IgE receptor (Fc epsilon RI) and activates mast cells. Biochemistry. 1993;32:7644-7649. doi: 10.1021/bi00081a007.
94 Sano H, Hsu DK, Yu L et al. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol. 2000;165:2156-2164. doi:10.4049/jimmunol.165.4.2156 (2000).
95 Yamaoka A, Kuwabara I, Frigeri LG, Liu FT. A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils. J Immunol. 1995;154:3479-3487.
96 MacKinnon AC, Farnworth SL, Hodkinson PS et al. Regulation of alternative macrophage activation by galectin-3. J Immunol. 2008; 180:2650-2658. doi: 10.4049/jimmunol.180.4.2650.
97 Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006;99:675-691. doi:10.1161/01.RES.0000243584.45145.3f (2006).
98 Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 1994;144:275-285.
99 Gan CT, Lankhaar JW, Westerhof N et al. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest. 2007;132:1906-1912. doi:chest.07-1246 [pii] 10.1378/chest.07-1246 (2007).
100 Kasper M, Hughes RC. Immunocytochemical evidence for a modulation of galectin 3 (Mac-2), a carbohydrate binding protein, in pulmonary fibrosis. J Pathol. 1996;179:309-316.doi:10.1002/(sici)1096-9896(199607)179:3<309::Aid-path572>3.0.Co;2-d (1996).
101 Bennett GA, Smith FJ. Pulmonary hypertension in rats living under compressed air conditions. J Exp Med. 1934;59:181-193. doi: 10.1084/jem.59.2.181.
102 Wang X, Wang Y, Zhang J, et al. Galectin-3 contributes to vascular fibrosis in monocrotaline-induced pulmonary arterial hypertension rat model. J Biochem Mol Toxicol. 2017;31, doi:10.1002/jbt.21879 (2017).
103 Koopmans SM, Bot FJ, Schouten HC, Janssen J, van Marion A. The involvement of Galectins in the modulation of the JAK/STAT pathway in myeloproliferative neoplasia. Am J Blood Res. 2012;2:119-127.
104 Song X, Qian X, Shem M et al. Protein kinase C promotes cardiac fibrosis and heart failure by modulatiing galectin-3 expression. Biochim Biophys Acta. 2015;1853:513-52. doi:10.1016/j.bbamcr.2014.12.001 (2015).
105 Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J of Cardiol. 2016;32:659-668. doi: 10.1016/j.cjca.2016.02.070.
106 Parry EH, Abrahams DG. The function of the heart in endomyocardial fibrosis of the right ventricle. Br Heart J. 1963;25:619-629. doi: 10.1136/hrt.25.5.619.
107 Lopez-Andres N, Rossignol P, Iraqi W. et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail. 2012;14:74-81. doi:10.1093/eurjhf/hfr151 (2012).
108 Ho JE, Liu C, Lyass A et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60:1249-1256. doi:10.1016/j.jacc.2012.04.053 (2012).
109 Yu L, Ruifrok WP, Meissner M et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013;6:107-117. doi:10.1161/CIRCHEARTFAILURE.112.971168 CIRCHEARTFAILURE.112.971168 [pii] (2013).
110 Sharma UC, Pokharel S, van Brakel TJ et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121-3128. doi:10.1161/01.CIR.0000147181.65298.4D (2004).
111 Waldenstrom A, Martinussen HJ, Gerdin B, Hallgren R. Accumulation of hyaluronan and tissue edema in experimental myocardial infarction. J Clin Invest. 1991;88:1622-1628. doi:10.1172/JCI115475 (1991).
112 Huebener P. Abou-Khamas T, Zymek P et al. CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol. 2008;180:2625-2633. doi: 10.4049/jimmunol.180.4.2625.
113 Wang Z, Chesler NC. Pulmonary vascular wall stiffness: An important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ. 2011;1:212-223. doi:10.4103/2045-8932.83453 PC-1-212 [pii] (2011).
114 Li M, Riddle SR, Frid MG et al. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol. 2011;187:2711-2722. doi:jimmunol.1100479 [pii] 10.4049/jimmunol.1100479 (2011).
115 Sitbon O, Gaine S. Beyond a single pathway: combination therapy in pulmonary arterial hypertension. Eur Respir Rev. 2016;25:408-417. doi:10.1183/16000617.0085-2016 (2016).