Analysis of Bevacizumab Activity Following Treatment of Patients with Ovarian Cancer or Glioblastoma

Main Article Content

Christophe Lallemand Rosa Ferrando-Miguel Franziska Di Pauli Florian Deisenhamer Michael G. Tovey

Abstract

Highly sensitive reporter-gene assays have been developed that allow the precise quantification of both the direct vascular endothelial growth factor-A neutralizing activity of bevacizumab and the ability of bevacizumab to activate antibody dependent cellular cytotoxicity. The use of these assays to analyzes samples from patients with ovarian cancer following four cycle of bevacizumab treatment revealed a close correlation between bevacizumab neutralizing activity and antibody dependent cellular cytotoxicity activity, and a reasonably good correlation between both activities and circulating drug levels determined using an enzyme-linked immunosorbent assay. Analysis of longitudinal samples from a small cohort of patients with glioblastoma treated with bevacizumab revealed a lower correlation between these parameters. We report herein that reanalysis of the grouped samples from the two studies using the nonparametric Spearman rank correlation coefficient revealed a surprisingly good correlation between the two facets of bevacizumab activity, and between both activities and circulating drug levels despite the different indications and treatment regimens, revealing new insights into the action of bevacizumab in neoplastic disease.

Keywords: Ovarian cancer, glioblastoma, bevacizumab, angiogenesis, antibody dependent cellular cytotoxicity

Article Details

How to Cite
LALLEMAND, Christophe et al. Analysis of Bevacizumab Activity Following Treatment of Patients with Ovarian Cancer or Glioblastoma. Medical Research Archives, [S.l.], v. 11, n. 3, mar. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3652>. Date accessed: 11 jan. 2025. doi: https://doi.org/10.18103/mra.v11i3.3652.
Section
Research Articles

References

[1] Li Y, Clarke J, Cha S. Bevacizumab in recurrent glioma: Patterns of treatment failure. BRAIN TUMOR RES TREAT (2017) 5:1-9.
[2] Wenger KJ, Wagner M, You SJ, Franz K, Harter PN, Burger MC, et al. Bevacizumab as last-line treatment for glioblastoma following failure of radiotherapy, temozolomide and lomustine. Oncol Lett. (2017) 14:1141–1146. doi: 10.3892/ol.2017.6251
[3] Panares RL & Garcia AA. Bevacizumab in the management of solid tumors Expert Reviews of Anticancer Therapy (2014) 7:433-445.
[4] Oza, AM, Dubois F, Hegg R, Hernandez CA, Finocchiaro G, Ghirighelli F, et al. Along-term study of bevacizumab in patients with solid tumors. The Oncologist. (2021) 26:2254-2264.
[5] Garcia J, Hurwitz HI, Sandler AB, Miles D, Coleman RL, Deurloo R, et al. bevacizumab (Avastin ® ) in cancer treatment: a review of 15 years of clinical experience and future outlook. Cancer Treat Rev. (2017) 86:1-18. 102017. doi:10.1016/j.ctrv.2020.102017
[6] Wang A, Fei D, Vanderlaan M, Song A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis.(2004) 7:335–345. doi:10.1007/10456-04-8272-2
[7] Lallemand C, Ferrando-Miguel R, Auer M, Iglseder S, Czech T, Gaber-Wagener A, et al. Quantification of Bevacizumab Activity Following Treatment of Patients with Ovarian Cancer or Glioblastoma. Frontiers in Immunology (2020) 11:1-9, Article 515556
[8] Lallemand C,Liang F, Staub F, Simansour M, Vallette B, Huang L, Ferrando-Miguel R, Tovey MG. A Novel System for the Quantification of the ADCC Activity of Therapeutic Antibodies. Journal of Immunology Research (2017) 10:1-19
[9] Louis DN, Ohgaki H, Wiestler OD, WK C. WHO classification of tumors of the central nervous system. Acta Neuropathol. (2016) 6:803-820.
[10] Schweighofer B, Schultes J, Pomyje J, Hofer E. Signals and genes induced by angiogenic growth factors in comparison to inflammatory cytokines in endothelial cells. Clin Hemorheol Microcirc. (2007) 37:57–62.
[11] Lee A & Shirley M. Ranibizumab: A review in retinopathy of prematurity. Pediatric Drugs (2021) 23:111-117 doi: 10.1007/s40272-020-00433-z.
[12] Ferrara N, Adams AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Ther. (2016) 15:385–403. doi: 10.1038/nrd.2015.17
[13] Baish JW, Jain RK. Fractals and cancer. Cancer Res. (2000) 60: 3683–3688.
[14] Yang AD, Bauer TW, Camp ER, Somcio BS, Liu W, Fan BS. Improving delivery of antineoplastic agents with anti-vascular endothelial growth factor therapy. Cancer (2005) 103:1561-1570
[15] Paley PJ, Staskus KA, Gebhard K, Mohanraj D, Twiggs LB, Carson LF, et al ; Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer (1997) 80: 98-106
[16] Flyn RJ, Wang L, Gillespie DL, Stoddard GL, Reid JK, Owens J; et al Hypoxia-regulated protein expression, patient characteristics, and previous imaging as predictors of survival in adults with glioblastoma. Cancer (2008) 113:1032-1042
[17] Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med (2014) 370(8):709–22. https://doi.org/10.1056/NEJMoa1308345.
[18] Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H et al N Engl J Med (2011) 365(26):2473-2483. DOI: 10.1056/NEJMoa1104390
[19] Jain RK. Anti-angiogenesis strategies revisited: from starving tumors to alleviating. hypoxia. Cancer Cell (2014) 26 (5):605–622. https://doi.org/10.1016/j.ccell 10.006
[20] Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis (2017);20(2):185–204
[21] Folkins C, Man S, Xu P, Shaked S, Hicklin DJ, Kerbel RS, Anticancer Therapies Combining Antiangiogenic and Tumor Cell Cytotoxic Effects Reduce the Tumor Stem-Like
Cell Fraction in Glioma Xenograft Tumors Cancer Res (2007) 67: (8). 3560-3564
[22] Souberan, A., Brustlein, S., Couarne, G., Chasson, L., Tchoghandjian, A. Effects of VEGF blockade on the dynamics of the inflammatory landscape in glioblastoma-bearing mice. J Neuroinflammation (2019) 16:191-206.
[23] Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia (2012) 60:502–14
[24] Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumor activity. Nat Rev Cancer (2008) 8:579-91
[25] Marcucci F, Bellone M, Rumio C, Corti A. Approaches to improve tumor accumulation and interactions between monoclonal antibodies and immune cells. MAbs (2013) 5:34–46.
[26] Pereira NA, Chan KF, Lin PC, Song Z. The less is more in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs (2018) 10:693–711.
[27] Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor gamma RIIIa gene. Blood. (2002) 99:754–758. doi:10.1182/blood.V99.3.754. PMID:11806974.
[28] Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, Laccabue D, Zerbini A, Camisa R, Bisagni G, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive meta- static breast cancer. J Clin Oncol. (2008) 26:1789–1796. doi:10.1200/ JCO.2007.14.8957. PMID:18347005.
[29] Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. (2003) 21:3940–3947. doi:10.1200/JCO.2003.05.013. PMID:12975461.
[30] Steenholdt C, Bendtzen K, Brynskov J, Thomsen OØ, Ainsworth MA. Cut-off levels and diagnostic accuracy of infliximab trough levels and anti-infliximab antibodies in Crohn’s disease. Scand J Gastroenterol. (2011) 46:310-318.
[31] Lipsky PE, van der Heiide DM, ST Clair EW, Furst DE, Breedveld FC, Kalden JT, et al Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis trail in rheumatoid arthritis with concomitant therapy study group. N. Eng. J. Med. (2000). 343:1594-1602 doi: 10.1056/NEJM200011303432202.