Gene Therapy for Intervertebral Disc Degeneration: An Overview of Current Strategies and Applications
Main Article Content
Abstract
Intervertebral disc degeneration is a pervasive condition contributing to chronic back pain, affecting up to a third of the population, with risk further increasing with age. It is a significant driver of disability for millions of Americans and others worldwide. The standard of care today is reliant on symptomatic treatment rather than addressing the root cause of disease. Surgical interventions alter the structural integrity and biomechanics of the spine, often leading to loss of function and motion, and post-operative complications. This is the basis for innovation in novel biologic treatments, including gene therapy, which aims to reestablish the optimal balance between matrix catabolism and anabolism within pathologically degenerating disc cells. This review will cover the significant advances that have led to identification of target therapeutic genes combined with regulated expression of the therapeutic transgene and successful systems for gene delivery into cells. Recent advances in viral and non-viral vectors for gene transfer, silencing of genes by RNA interference, editing of genes by clustered regularly interspaced short palindromic repeats, and modifying mammalian target of rapamycin signaling pathwayS offer promising treatment avenues. Clinical translation of these approaches, however, will require further investigation of the pathological basis of disc degeneration in addition to systematic safety measures for the adoption of gene therapy.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Urban JPG, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003;5(3):120-130. doi:10.1186/ar629
3. Saal JA, Saal JS. Nonoperative treatment of herniated lumbar intervertebral disc with radiculopathy. An outcome study. Spine (Phila Pa 1976). 1989;14(4):431-437. doi:10.1097/00007632-198904000-00018
4. Katz JN. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J Bone Joint Surg Am. 2006;88 Suppl 2:21-24. doi:10.2106/JBJS.E.01273
5. Andersson GB. Epidemiological features of chronic low-back pain. Lancet. 1999;354(9178):581-585. doi:10.1016/S0140-6736(99)01312-4
6. Bono CM, Lee CK. Critical analysis of trends in fusion for degenerative disc disease over the past 20 years: influence of technique on fusion rate and clinical outcome. Spine (Phila Pa 1976). 2004;29(4):455-463; discussion Z5. doi:10.1097/01.brs.0000090825.94611.28
7. Hwang SL, Hwang YF, Lieu AS, et al. Outcome analyses of interbody titanium cage fusion used in the anterior discectomy for cervical degenerative disc disease. J Spinal Disord Tech. 2005;18(4):326-331. doi:10.1097/01.bsd.0000164198.30725.2d
8. Karasek M, Bogduk N. Twelve-month follow-up of a controlled trial of intradiscal thermal anuloplasty for back pain due to internal disc disruption. Spine (Phila Pa 1976). 2000;25(20):2601-2607. doi:10.1097/00007632-200010150-00010
9. Nishida K, Kang JD, Gilbertson LG, et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine (Phila Pa 1976). 1999;24(23):2419-2425. doi:10.1097/00007632-199912010-00002
10. Dowdell J, Erwin M, Choma T, Vaccaro A, Iatridis J, Cho SK. Intervertebral Disk Degeneration and Repair. Neurosurgery. 2017;80(3S):S46-S54. doi:10.1093/neuros/nyw078
11. Hubert MG, Vadala G, Sowa G, Studer RK, Kang JD. Gene therapy for the treatment of degenerative disk disease. J Am Acad Orthop Surg. 2008;16(6):312-319. doi:10.5435/00124635-200806000-00003
12. Sambrook PN, MacGregor AJ, Spector TD. Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum. 1999;42(2):366-372. doi:10.1002/1529-0131(199902)42:2<366::AID-ANR20>3.0.CO;2-6
13. Noponen-Hietala N, Kyllönen E, Männikkö M, et al. Sequence variations in the collagen IX and XI genes are associated with degenerative lumbar spinal stenosis. Ann Rheum Dis. 2003;62(12):1208-1214. doi:10.1136/ard.2003.008334
14. Kelsey JL, Githens PB, Walter SD, et al. An epidemiological study of acute prolapsed cervical intervertebral disc. J Bone Joint Surg Am. 1984;66(6):907-914. doi:10.2106/00004623-198466060-00011
15. Pluijm SMF, van Essen HW, Bravenboer N, et al. Collagen type I alpha1 Sp1 polymorphism, osteoporosis, and intervertebral disc degeneration in older men and women. Ann Rheum Dis. 2004;63(1):71-77. doi:10.1136/ard.2002.002287
16. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Phila Pa 1976). 2002;27(23):2631-2644. doi:10.1097/00007632-200212010-00002
17. Roh EJ, Darai A, Kyung JW, et al. Genetic Therapy for Intervertebral Disc Degeneration. Int J Mol Sci. 2021;22(4). doi:10.3390/ijms22041579
18. Pockert AJ, Richardson SM, le Maitre CL, et al. Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum. 2009;60(2):482-491. doi:10.1002/art.24291
19. Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM. Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine (Phila Pa 1976). 2000;25(23):3005-3013. doi:10.1097/00007632-200012010-00007
20. Kanemoto M, Hukuda S, Komiya Y, Katsuura A, Nishioka J. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 human intervertebral discs. Spine (Phila Pa 1976). 1996;21(1):1-8. doi:10.1097/00007632-199601010-00001
21. Urban JP, McMullin JF. Swelling pressure of the inervertebral disc: influence of proteoglycan and collagen contents. Biorheology. 1985;22(2):145-157. doi:10.3233/bir-1985-22205
22. Roberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am. 2006;88 Suppl 2:10-14. doi:10.2106/JBJS.F.00019
23. Butler D, Trafimow JH, Andersson GB, McNeill TW, Huckman MS. Discs degenerate before facets. Spine (Phila Pa 1976). 1990;15(2):111-113. doi:10.1097/00007632-199002000-00012
24. Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976). 1995;20(11):1307-1314. doi:10.1097/00007632-199506000-00022
25. Colombini A, Lombardi G, Corsi MM, Banfi G. Pathophysiology of the human intervertebral disc. Int J Biochem Cell Biol. 2008;40(5):837-842. doi:10.1016/j.biocel.2007.12.011
26. Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud M v. Disc in flames: Roles of TNF-α and IL-1β in intervertebral disc degeneration. Eur Cell Mater. 2015;30:104-116; discussion 116-7. doi:10.22203/ecm.v030a08
27. Patil P, Niedernhofer LJ, Robbins PD, Lee J, Sowa G, Vo N. Cellular senescence in intervertebral disc aging and degeneration. Curr Mol Biol Rep. 2018;4(4):180-190. doi:10.1007/s40610-018-0108-8
28. le Maitre CL, Freemont AJ, Hoyland JA. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther. 2007;9(3):R45. doi:10.1186/ar2198
29. Gruber HE, Ingram JA, Norton HJ, Hanley EN. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs. Spine (Phila Pa 1976). 2007;32(3):321-327. doi:10.1097/01.brs.0000253960.57051.de
30. Gruber HE, Hanley EN. Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine (Phila Pa 1976). 1998;23(7):751-757. doi:10.1097/00007632-199804010-00001
31. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147(4):742-758. doi:10.1016/j.cell.2011.10.033
32. Kakiuchi Y, Yurube T, Kakutani K, et al. Pharmacological inhibition of mTORC1 but not mTORC2 protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism through Akt and autophagy induction. Osteoarthritis Cartilage. 2019;27(6):965-976. doi:10.1016/j.joca.2019.01.009
33. Ito M, Yurube T, Kakutani K, et al. Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction. Osteoarthritis Cartilage. 2017;25(12):2134-2146. doi:10.1016/j.joca.2017.08.019
34. Fujii K, Yamazaki M, Kang JD, et al. Discogenic Back Pain: Literature Review of Definition, Diagnosis, and Treatment. JBMR Plus. 2019;3(5):e10180. doi:10.1002/jbm4.10180
35. Mosley GE, Evashwick-Rogler TW, Lai A, Iatridis JC. Looking beyond the intervertebral disc: the need for behavioral assays in models of discogenic pain. Ann N Y Acad Sci. 2017;1409(1):51-66. doi:10.1111/nyas.13429
36. Kang JD, Stefanovic-Racic M, McIntyre LA, Georgescu HI, Evans CH. Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine (Phila Pa 1976). 1997;22(10):1065-1073. doi:10.1097/00007632-199705150-00003
37. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF, Evans CH. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine (Phila Pa 1976). 1996;21(3):271-277. doi:10.1097/00007632-199602010-00003
38. Nishida K, Suzuki T, Kakutani K, et al. Gene therapy approach for disc degeneration and associated spinal disorders. Eur Spine J. 2008;17 Suppl 4:459-466. doi:10.1007/s00586-008-0751-5
39. Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG. Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am. 2004;86(7):1497-1503. doi:10.2106/00004623-200407000-00020
40. Palmer N, Guan Z, Chai NC. Spinal Cord Stimulation for Failed Back Surgery Syndrome -- Patient Selection Considerations. Transl Perioper Pain Med. 2019;6(3):81-90.
41. Knezevic NN, Mandalia S, Raasch J, Knezevic I, Candido KD. Treatment of chronic low back pain - new approaches on the horizon. J Pain Res. 2017;10:1111-1123. doi:10.2147/JPR.S132769
42. Sobajima S, Kim JS, Gilbertson LG, Kang JD. Gene therapy for degenerative disc disease. Gene Ther. 2004;11(4):390-401. doi:10.1038/sj.gt.3302200
43. Takada T, Nishida K, Doita M, Kurosaka M. Fas ligand exists on intervertebral disc cells: a potential molecular mechanism for immune privilege of the disc. Spine (Phila Pa 1976). 2002;27(14):1526-1530. doi:10.1097/00007632-200207150-00009
44. Thompson JP, Oegema TR, Bradford DS. Stimulation of mature canine intervertebral disc by growth factors. Spine (Phila Pa 1976). 1991;16(3):253-260. doi:10.1097/00007632-199103000-00001
45. Osada R, Ohshima H, Ishihara H, et al. Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs. J Orthop Res. 1996;14(5):690-699. doi:10.1002/jor.1100140503
46. Takegami K, Thonar EJMA, An HS, Kamada H, Masuda K. Osteogenic protein-1 enhances matrix replenishment by intervertebral disc cells previously exposed to interleukin-1. Spine (Phila Pa 1976). 2002;27(12):1318-1325. doi:10.1097/00007632-200206150-00014
47. Li J, Yoon ST, Hutton WC. Effect of bone morphogenetic protein-2 (BMP-2) on matrix production, other BMPs, and BMP receptors in rat intervertebral disc cells. J Spinal Disord Tech. 2004;17(5):423-428. doi:10.1097/01.bsd.0000112084.85112.5d
48. Leckie SK, Bechara BP, Hartman RA, et al. Injection of AAV2-BMP2 and AAV2-TIMP1 into the nucleus pulposus slows the course of intervertebral disc degeneration in an in vivo rabbit model. Spine J. 2012;12(1):7-20. doi:10.1016/j.spinee.2011.09.011
49. Tim Yoon S, Su Kim K, Li J, et al. The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro. Spine (Phila Pa 1976). 2003;28(16):1773-1780. doi:10.1097/01.BRS.0000083204.44190.34
50. Gruber HE, Norton HJ, Hanley EN. Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro. Spine (Phila Pa 1976). 2000;25(17):2153-2157. doi:10.1097/00007632-200009010-00002
51. Newman CM, Lawrie A, Brisken AF, Cumberland DC. Ultrasound gene therapy: on the road from concept to reality. Echocardiography. 2001;18(4):339-347. doi:10.1046/j.1540-8175.2001.00339.x
52. Lawrie A, Brisken AF, Francis SE, et al. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation. 1999;99(20):2617-2620. doi:10.1161/01.cir.99.20.2617
53. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. 2000;7(23):2023-2027. doi:10.1038/sj.gt.3301339
54. Nishida K, Doita M, Takada T, et al. Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine (Phila Pa 1976). 2006;31(13):1415-1419. doi:10.1097/01.brs.0000219945.70675.dd
55. Harada A, Kataoka K. Polyion complex micelle formation from double-hydrophilic block copolymers composed of charged and non-charged segments in aqueous media. Polym J. 2018;50(1):95-100. doi:10.1038/pj.2017.67
56. Itaka K, Yamauchi K, Harada A, Nakamura K, Kawaguchi H, Kataoka K. Polyion complex micelles from plasmid DNA and poly(ethylene glycol)–poly(l-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. Biomaterials. 2003;24(24):4495-4506. doi:10.1016/S0142-9612(03)00347-8
57. Li Z, Yu X, Shen J, Chan MT v, Wu WKK. MicroRNA in intervertebral disc degeneration. Cell Prolif. 2015;48(3):278-283. doi:10.1111/cpr.12180
58. Feng G, Zha Z, Huang Y, et al. Sustained and Bioresponsive Two-Stage Delivery of Therapeutic miRNA via Polyplex Micelle-Loaded Injectable Hydrogels for Inhibition of Intervertebral Disc Fibrosis. Adv Healthc Mater. 2018;7(21):e1800623. doi:10.1002/adhm.201800623
59. Huang Y, Huang L, Li L, et al. MicroRNA-25-3p therapy for intervertebral disc degeneration by targeting the IL-1β/ZIP8/MTF1 signaling pathway with a novel thermo-responsive vector. Ann Transl Med. 2020;8(22):1500-1500. doi:10.21037/atm-20-6595
60. Takeoka Y, Yurube T, Nishida K. Gene Therapy Approach for Intervertebral Disc Degeneration: An Update. Neurospine. 2020;17(1):3-14. doi:10.14245/ns.2040042.021
61. Robbins PD, Ghivizzani SC. Viral vectors for gene therapy. Pharmacol Ther. 1998;80(1):35-47.
62. Yang Y, Nunes FA, Berencsi K, Furth EE, Gönczöl E, Wilson JM. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A. 1994;91(10):4407-4411. doi:10.1073/pnas.91.10.4407
63. Tripathy SK, Black HB, Goldwasser E, Leiden JM. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med. 1996;2(5):545-550. doi:10.1038/nm0596-545
64. Somia N, Verma IM. Gene therapy: trials and tribulations. Nat Rev Genet. 2000;1(2):91-99. doi:10.1038/35038533
65. Nishida K, Kang JD, Suh JK, Robbins PD, Evans CH, Gilbertson LG. Adenovirus-mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine (Phila Pa 1976). 1998;23(22):2437-2442; discussion 2443. doi:10.1097/00007632-199811150-00016
66. Yoon ST, Park JS, Kim KS, et al. ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine (Phila Pa 1976). 2004;29(23):2603-2611. doi:10.1097/01.brs.0000146103.94600.85
67. Paul R, Haydon RC, Cheng H, et al. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine (Phila Pa 1976). 2003;28(8):755-763.
68. Wallach CJ, Sobajima S, Watanabe Y, et al. Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine (Phila Pa 1976). 2003;28(20):2331-2337. doi:10.1097/01.BRS.0000085303.67942.94
69. Moon SH, Nishida K, Gilbertson LG, et al. Biologic response of human intervertebral disc cells to gene therapy cocktail. Spine (Phila Pa 1976). 2008;33(17):1850-1855. doi:10.1097/BRS.0b013e31817e1cd7
70. Lai CM, Lai YKY, Rakoczy PE. Adenovirus and adeno-associated virus vectors. DNA Cell Biol. 2002;21(12):895-913. doi:10.1089/104454902762053855
71. Nakai H, Storm TA, Kay MA. Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol. 2000;18(5):527-532. doi:10.1038/75390
72. Yan Z, Zhang Y, Duan D, Engelhardt JF. Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A. 2000;97(12):6716-6721. doi:10.1073/pnas.97.12.6716
73. Halbert CL, Rutledge EA, Allen JM, Russell DW, Miller AD. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol. 2000;74(3):1524-1532. doi:10.1128/jvi.74.3.1524-1532.2000
74. Chirmule N, Xiao W, Truneh A, et al. Humoral immunity to adeno-associated virus type 2 vectors following administration to murine and nonhuman primate muscle. J Virol. 2000;74(5):2420-2425. doi:10.1128/jvi.74.5.2420-2425.2000
75. Lattermann C, Oxner WM, Xiao X, et al. The adeno associated viral vector as a strategy for intradiscal gene transfer in immune competent and pre-exposed rabbits. Spine (Phila Pa 1976). 2005;30(5):497-504. doi:10.1097/01.brs.0000154764.62072.44
76. Li H, Li W, Liang B, Wei J, Yin D, Fan Q. Role of AP-2α/TGF-β1/Smad3 axis in rats with intervertebral disc degeneration. Life Sci. 2020;263:118567. doi:10.1016/j.lfs.2020.118567
77. Wehling P, Schulitz KP, Robbins PD, Evans CH, Reinecke JA. Transfer of genes to chondrocytic cells of the lumbar spine. Proposal for a treatment strategy of spinal disorders by local gene therapy. Spine (Phila Pa 1976). 1997;22(10):1092-1097. doi:10.1097/00007632-199705150-00008
78. Ono C, Okamoto T, Abe T, Matsuura Y. Baculovirus as a Tool for Gene Delivery and Gene Therapy. Viruses. 2018;10(9):510. doi:10.3390/v10090510
79. Liu X, Li K, Song J, Liang C, Wang X, Chen X. Efficient and Stable Gene Expression in Rabbit Intervertebral Disc Cells Transduced With a Recombinant Baculovirus Vector. Spine (Phila Pa 1976). 2006;31(7):732-735. doi:10.1097/01.brs.0000206977.61305.43
80. Liu Y, Yu T, Ma XX, Xiang HF, Hu YG, Chen BH. Lentivirus-mediated TGF-β3, CTGF and TIMP1 gene transduction as a gene therapy for intervertebral disc degeneration in an in vivo rabbit model. Exp Ther Med. 2016;11(4):1399-1404. doi:10.3892/etm.2016.3063
81. Zhao Z, Li S, Huang H, Fang J, Wei H, Xi Y. In vivo delivery of MMP3-shRNA and Sox9 lentivirus cocktail enhances matrix synthesis to prevent lumbar disc degeneration. Advances in Clinical and Experimental Medicine. 2020;29(6):639-647. doi:10.17219/acem/121509
82. Moon SH, Nishida K, Gilbertson LG, et al. Biologic response of human intervertebral disc cells to gene therapy cocktail. Spine (Phila Pa 1976). 2008;33(17):1850-1855. doi:10.1097/BRS.0b013e31817e1cd7
83. Wallach CJ, Kim JS, Sobajima S, et al. Safety assessment of intradiscal gene transfer: a pilot study. Spine J. 6(2):107-112. doi:10.1016/j.spinee.2005.05.002
84. Chtarto A, Bender HU, Hanemann CO, et al. Tetracycline-inducible transgene expression mediated by a single AAV vector. Gene Ther. 2003;10(1):84-94. doi:10.1038/sj.gt.3301838
85. Ueblacker P, Wagner B, Krüger A, et al. Inducible nonviral gene expression in the treatment of osteochondral defects. Osteoarthritis Cartilage. 2004;12(9):711-719. doi:10.1016/j.joca.2004.05.011
86. Sowa G, Westrick E, Pacek C, et al. In vitro and in vivo testing of a novel regulatory system for gene therapy for intervertebral disc degeneration. Spine (Phila Pa 1976). 2011;36(10):E623-8. doi:10.1097/BRS.0b013e3181ed11c1
87. Han Y, Ouyang Z, Wawrose RA, et al. ISSLS prize in basic science 2021: a novel inducible system to regulate transgene expression of TIMP1. Eur Spine J. 2021;30(5):1098-1107. doi:10.1007/s00586-021-06728-0
88. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40-6. doi:10.1093/hmg/ddu125
89. Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490-495. doi:10.1038/nature16526
90. Fan Y, Zhao L, Lai Y, Lu K, Huang J. CRISPR-Cas9-mediated loss of function of β-catenin attenuates intervertebral disc degeneration. Mol Ther Nucleic Acids. 2022;28:387-396. doi:10.1016/j.omtn.2022.03.024
91. Farhang N, Ginley-Hidinger M, Berrett KC, Gertz J, Lawrence B, Bowles RD. Lentiviral CRISPR Epigenome Editing of Inflammatory Receptors as a Gene Therapy Strategy for Disc Degeneration. Hum Gene Ther. 2019;30(9):1161-1175. doi:10.1089/hum.2019.005
92. Cambria E, Arlt MJE, Wandel S, et al. TRPV4 Inhibition and CRISPR-Cas9 Knockout Reduce Inflammation Induced by Hyperphysiological Stretching in Human Annulus Fibrosus Cells. Cells. 2020;9(7). doi:10.3390/cells9071736
93. Stover JD, Farhang N, Berrett KC, Gertz J, Lawrence B, Bowles RD. CRISPR Epigenome Editing of AKAP150 in DRG Neurons Abolishes Degenerative IVD-Induced Neuronal Activation. Mol Ther. 2017;25(9):2014-2027. doi:10.1016/j.ymthe.2017.06.010
94. Krupkova O, Cambria E, Besse L, Besse A, Bowles R, Wuertz-Kozak K. The potential of CRISPR/Cas9 genome editing for the study and treatment of intervertebral disc pathologies. JOR Spine. 2018;1(1):e1003. doi:10.1002/jsp2.1003
95. Han H. RNA Interference to Knock Down Gene Expression. Methods Mol Biol. 2018;1706:293-302. doi:10.1007/978-1-4939-7471-9_16
96. Sontheimer EJ. Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol. 2005;6(2):127-138. doi:10.1038/nrm1568
97. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296(5567):550-553. doi:10.1126/science.1068999
98. Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A. 2002;99(9):6047-6052. doi:10.1073/pnas.092143499
99. Micura R. Small interfering RNAs and their chemical synthesis. Angew Chem Int Ed Engl. 2002;41(13):2265-2269. doi:10.1002/1521-3773(20020703)41:13<2265::AID-ANIE2265>3.0.CO;2-3
100. Kakutani K, Nishida K, Uno K, et al. Prolonged down regulation of specific gene expression in nucleus pulposus cell mediated by RNA interference in vitro. J Orthop Res. 2006;24(6):1271-1278. doi:10.1002/jor.20171
101. Suzuki T, Nishida K, Kakutani K, et al. Sustained long-term RNA interference in nucleus pulposus cells in vivo mediated by unmodified small interfering RNA. Eur Spine J. 2009;18(2):263-270. doi:10.1007/s00586-008-0873-9
102. Seki S, Asanuma-Abe Y, Masuda K, et al. Effect of small interference RNA (siRNA) for ADAMTS5 on intervertebral disc degeneration in the rabbit anular needle-puncture model. Arthritis Res Ther. 2009;11(6):R166. doi:10.1186/ar2851
103. Sudo H, Minami A. Caspase 3 as a therapeutic target for regulation of intervertebral disc degeneration in rabbits. Arthritis Rheum. 2011;63(6):1648-1657. doi:10.1002/art.30251
104. Yamada K, Sudo H, Iwasaki K, et al. Caspase 3 silencing inhibits biomechanical overload-induced intervertebral disk degeneration. Am J Pathol. 2014;184(3):753-764. doi:10.1016/j.ajpath.2013.11.010
105. Bi F, Liu W, Wu Z, Ji C, Chang C. Antiaging Factor Klotho Retards the Progress of Intervertebral Disc Degeneration through the Toll-Like Receptor 4-NF-κB Pathway. Int J Cell Biol. 2020;2020:8319516. doi:10.1155/2020/8319516
106. Yurube T, Ito M, Kakiuchi Y, Kuroda R, Kakutani K. Autophagy and mTOR signaling during intervertebral disc aging and degeneration. JOR Spine. 2020;3(1):e1082. doi:10.1002/jsp2.1082
107. Ouyang ZH, Wang WJ, Yan YG, Wang B, Lv GH. The PI3K/Akt pathway: a critical player in intervertebral disc degeneration. Oncotarget. 2017;8(34):57870-57881. doi:10.18632/oncotarget.18628