Ethical Concerns in Dermatology and Cosmetic Applications

Main Article Content

Kadircan H. Keskinbora, PhD Eda Kumbasar

Abstract

Our aim in this article is to consider ethical concerns and sensitivities in Dermatology and Cosmetic applications. It is appropriate for dermatologists to make cosmetic applications and use artificial intelligence aid as experts who know the structure and diseases of the skin best. The practice of cosmetology by physicians other than dermatologists creates ethical problems.


Women are especially more interested in dermatology. Body dysmorphic disorders are more common in women. When dermatologists evaluate the cosmetic dermatology patient and create a treatment plan, if there are unrealistic expectations, the patient should be guided correctly by considering the patient's wishes. Social media applications, which have attracted attention in recent years, have caused an increase in body dysmorphic disorders in individuals.


Cosmetology is a division that can never be separated from dermatology. Patients frequently apply to cosmetic dermatology because of hyperpigmentation problems, aging problems, hair problems, toxin applications, dermal filler procedures, chemical peels, and mesotherapy, and ablative laser procedures. Burns resulting from laser epilation applications performed in aesthetic centers, complications such as tissue necrosis caused by dermal filler procedures performed by non-physicians, cosmetic problems, soft tissue infections, and allergic reactions resulting from applications such as mesotherapy and platelet-rich plasma are diseases frequently seen in dermatology outpatient clinics.


Another important issue is the materials used in platelet-rich plasma, mesotherapy, toxin application, and dermal filler applications must be in the Class 3 Medical device category. Patients who apply to clinics for treatment should be made aware of this issue and patients should be protected from the complications that these medications may cause. Physicians should not use products that do not have class 3 certificates in cosmetic dermatology to keep the cost of the product low, especially when choosing materials.


In medicine, there is always an aesthetic concern beyond technical or even scientific concerns. We think that it is necessary to express and elaborate on the concerns arising from the ethical issues that are experienced or may be experienced in dermatology practices. Physicians always try to take the patient's psychological and pathological problems into consideration. However, ethical concerns should not be forgotten when treating the field of aesthetics.

Keywords: Dermatology, cosmetics, artificial intelligence, ethics, medical ethics

Article Details

How to Cite
KESKINBORA, Kadircan H.; KUMBASAR, Eda. Ethical Concerns in Dermatology and Cosmetic Applications. Medical Research Archives, [S.l.], v. 11, n. 2, apr. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3667>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v11i2.3667.
Section
Research Articles

References

1. Legg S, Hutter M. A Collection of Definitions of Intelligence. Front Artif Intell Appl. 2007;157:17-24. doi: 10.48550/arXiv.0706.3639
2. Rhodios A. The Argonautika: Expanded Edition. University of California Press; 2007. p. 355.
3. Schaffer S. Enlightened Automata. In: Clark W, Golinski J, Schaffer S, eds. The Sciences in Enlightened Europe. Chicago and London: The University of Chicago Press; 1999. p. 126-65.
4. Randell B. From Analytical Engine to Electronic Digital Computer: The Contributions of Ludgate, Torres, and Bush. Ann Hist Comput. 1982;4(4):327-41. DOI:10.1109/MAHC.1982.10042
5. Moor J. The Dartmouth College Artificial Intelligence Conference: The Next Fifty Years, AI Magazine. 2006;27(4):87-91.
6. De A, Sarda A, Gupta S, Das S. Use of Artificial Intelligence in Dermatology. Indian J Dermatol. 2020 Sep-Oct; 65(5): 352–357. doi: 10.4103/ijd.IJD_418_20
7. Hogarty DT, Su JC, Phan K, Attia M, Hossny M, Nahavandi S, et al. Artificial intelligence in dermatology-where we are and the way to the future: A review. Am J Clin Dermatol. 2020;21:41–7. doi: 10.1007/s40257-019-00462-6
8. Chao E, Meenan CK, ferris LK. Smartphone-Based Applications for Skin Monitoring and Melanoma Detection. Dermatol Clin. 2017;35(4):551-7. doi: 10.1016/j.det.2017.06.014.
9. Marek Aj, Chu EY, Ming ME, Khan ZA, Kovarik CL. Impact of a smartphone application on skin self-examination rates in patients who are new to total body photography: A randomized controlled trial. J Am Acad Dermatol. 2018;79(3):564-7. doi: 10.1016/j.jaad.2018.02.025
10. Rat C, Hild S, Rault Sérandour J, Gaultier A, Quereux G, Dreno B, Nguyen JM. Use of Smartphones for Early Detection of Melanoma: Systematic Review. J Med Internet Res. 2018;20(4):e135. doi: 10.2196/jmir
11. Soenksen LR, Kassis T, Conover ST, Marti-Fuster B, Birkenfeld JS, Tucker-Schwartz J, et al. Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images. Sci Transl Med. 2021;13(581):eabb3652. doi: 10.1126/scitranslmed.abb3652.
12. Gupta AK, Hall DC. Diagnosing onychomycosis: a step forward? J Cosmet Dermatol. 2022;21(2):530-5. doi: 10.1111/jocd.14681
13. Kim YJ, Han SS, Yang HJ, Chang SE. Prospective, comparative evaluation of a deep neural network and dermoscopy in the diagnosis of onychomycosis. Plos One. 2020;15(6):e0234334. doi:10.1371/journal.pone.0234334. Erratum in: Plos One. 2020;15(12):e0244899.
14. Hogarty DT, Su JC, Phan K, Attia M, Hossny M, Nahavandi S, et al. Artificial intelligence in dermatology - where we are and the way to the future: a review. Am J Clin Dermatol. 2020;21(1):41-7. doi: 10.1007/s40257-019-00462-6
15. Young AT, Xiong M, Pfau J, Keiser MJ, Wei Ml. Artificial intelligence in dermatology: a primer. J Invest Dermatol. 2020;140(8):1504-12. doi:10.1016/j.jid.2020.02.026
16. Du-Harpur X, Watt FM, Luscombe NM, Lynch MD. What is AI? Applications of artificial intelligence to dermatology. Br J Dermatol. 2020;183(3):423-30. doi: 10.1111/bjd.18880.
17. Lim SS, Ohn J, Mun JH. Diagnosis of onychomycosis: from conventional techniques and dermoscopy to artificial intelligence. Front Med (Lausanne). 2021;8:637216 doi: 10.3389/fmed.2021.637216.
18. FDA allows marketing of first whole slide imaging system for digital pathology. https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-whole-slide-imaging-system-digital-pathology Accessed January 31, 2023.
19. Wells A, Patel S, Lee JB, Motaparthi K. Artificial intelligence in dermatopathology: Diagnosis, education, and research. J Cutan Pathol. 2021;48(8):1061-8. doi: 10.1111/cup.13954.
20. Ding Y, Dhawan G, Jones C, Ness T, Nichols E, Krasnogor N, et al. An open source pipeline for quantitative immunohistochemistry image analysis of inflammatory skin disease using artificial intelligence. J Eur Acad Dermatol Venereol. 2022;00:1–10. https://doi.org/10.1111/jdv.18726
21. Neltner JH, Abner EL, Schmitt FA, Denison SK, Anderson S, Patel E, et al. Digital pathology and image analysis for robust highthroughput quantitative assessment of Alzheimer disease neuropathologic changes. J Neuropath Exp Neurol. 2012;71(12):1075–85. doi:10.1097/NEN.0b013e3182768de4
22. Luchini C, Pantanowitz L, Adsay V, Asa SL, Antonini P, Girolami I, et al. Ki-67 assessment of pancreatic neuroendocrine neoplasms: systematic review and meta-analysis of manual vs digital pathology scoring. Mod Pathol. 2022;35(6):712–20. doi: 10.1038/s41379-022-01055-1.
23. Beauchamp T, Childress J. Principles of biomedical ethics. 8th ed. USA: Oxford University Press; 2019.
24. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data. JAMA Intern Med. 2018;178(11):1544-1547. doi: 10.1001/jamainternmed.2018.3763.
25. Banavar G. Learning to trust artificial intelligence systems - Accountability, compliance and ethics in the age of smart machines. IBM Glob Serv 2016. https://www.ibm.com/watson/assets/pdfs/Learning_to_trust_AI_systems.pdf Accessed February 1, 2023
26. Murdoch B. Privacy and artifcial intelligence: challenges for protecting health information in a new era. BMC Med Ethics 2021;22:122-6. https://doi.org/10.1186/s12910-021-00687-3
27. Andorno R. The Oviedo Convention: A European Legal Framework at the Intersection of Human Rights and Health Law. J Int Biotechnol Law. 2005;2(4):133-143. https://doi.org/10.1515/jibl.2005.2.4.133
28. Poon AIF, Sung JJY. opening the black box of AI-Medicine. J Gastroenterol Hepatol. 2021;36(3):581-584. doi: 10.1111/jgh.15384.
29. Güvercin CH. Tıpta yapay zeka ve etik (Atrificial Intelligence in Medicine and Ethics). Ekmekci PE, ed. Yapay Zeka ve Tıp Etiği (Artificial Intelligence and Medical Ethics). 1st ed. Ankara: Türkiye Klinikleri; 2020. p.7-13.
30. Thomsen K, Christensen AL, Iversen L, Lomholt HB, Winther O. Deep learning for diagnostic binary classification of multiple-lesion skin diseases. Front Med (Lausanne) 2020;7:574329. doi: 10.3389/fmed.2020.574329.
31. Panch T, Pearson-Stuttard J, Greaves F, Atun R. Artificial intelligence: opportunities and risks for public health. Lancet Digit Health. 2019;1(1):e13- e14. doi: 10.1016/S2589-7500(19)30002-0. Erratum in: Lancet Digit Health. 2019;1(3):e113.
32. Schulz PJ, Nakamoto K. Patient behavior and the benefits of artificial intelligence: the perils of "dangerous" literacy and illusory patient empowerment. Patient Educ Couns. 2013;92(2):223-228. doi: 10.1016/j.pec.2013.05.002
33. Lennartz S, Dratsch T, Zopfs D, Persigehl T, Maintz D, Große Hokamp N, et al. use and Control of Artificial Intelligence in Patients Across the Medical Workflow: Single-Center Questionnaire Study of Patient Perspectives. J Med Internet Res. 2021;23(2):e24221. doi: 10.2196/24221
34. Stevenson P, Finnane AR, Soyer HP. Teledermatology and clinical photography: safeguarding patient privacy and mitigating medico-legal risk. Med J Aust. 2016;204(5):198-200e1. doi: 10.5694/mja15.00996
35. Patel S, Wang JV, Motaparthi K, Lee JB. Artificial intelligence in dermatology for the clinician. Clin Dermatol. 2021;39(4):667-72. doi: 10.1016/j.clindermatol.2021.0
36. European commission. Harmonized standards for Medical devices. https://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/medical-devices_en Accessed February 2, 2023
37. Donawa Gray: The breast implant scandal and European Medical Device Regulation. https://www.donawa.com/wp-content/uploads/2019/06/Breast-implants-GMP-Review-Apr12.pdf Accessed February 2, 2023
38. J. Malvehy, J, Ginsberg, R, Sampietro‐Colom, L, Ficapal, J, Combalia, M, Svedenhag P. New regulation of medical devices in the EU: impact in dermatology. J Eur Acad Dermatol Venereol. 2022;36(3):360–364. doi: 10.1111/jdv.17830
39. Fink M, Akra B. Regulatory clearance: how are outcome measurements critical? Injury 2020;51(Suppl 2):S67–S70. doi: 10.1016/j.injury.2019.10.071
40. Misra VP. The changed image of botulinum toxin. BMJ 2002;325:1188. doi: 10.1136/bmj.325.7374.1188
41. Ringel EW. The morality of cosmetic surgery for aging. Arch Dermatol 1998;134:427-431. doi:10.1001/archderm.134.4.427
42. Cantor J. Cosmetic Dermatology and Physicians’ Ethical Obligations: More Than Just Hope in a Jar. Semin Cutan Med Surg 2005;24:155-160. doi:10.1016/j.sder.2005.04.005
43. Baumann L. Ethics in cosmetic dermatology. Clinics in Dermatology 2012;30;522–527. doi: 10.1016/j.clindermatol.2011.06.023
44. Neutrogena. Rapid wrinkle repair. https://www.neutrogena.com/products/skincare/neutrogena-rapid-wrinkle-repair-regenerating-cream/6811098XX.html Accessed January 30, 2023.
45. MacGregor HE: Forget Botox; there’s a new star in the wrinkle war. LA Times. Jan 24:F1, 2005
46. Taryn Rose. https://tarynrose.com/ Accessed January 20, 2023.
47. American Academy of Dermatology and AAD Association. Position statement on dispensing. Approved by the Board of Directors October 12,1998; amended by the Board of Directors September 26, 1999. Available at: http://www.aad.org/NR/rdonlyres/FCAAC923-3F36-4B36-8C35-945472973888/0/Dispensing.pdf Accessed December 24, 2022.
48. Dermatology Certification Application https://www.abderm.org/test-committees-and-directors/abd-examination-and-content-development-committees Accessed January 29, 2023
49. Phillips KA, Diaz SF. Gender differences in body dysmorphic disorder. J Nerv Ment Dis 1997;185:570-577. doi: 10.1097/00005053-199709000-00006
50. Wilson JB, Arpey CJ. Body dysmorphic disorder: Suggestions for detection and treatment in a surgical dermatology practice. Dermatol Surg 2004;30:1391-1399. doi: 10.1111/j.1524-4725.2004.30433.x
51. Cotterill JA. Body dysmorphic disorder. Dermatol Clin 1996;14:457-463. doi: 10.1016/s0733-8635(05)70373-9
52. Chen ZH, Lin L, Wu CF, Li CF, Xu RH, Sun Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun (Lond). 2021;41(11):1100-1115. doi:10.1002/cac2.12215. Epub 2021 Oct 6.
53. Panch T, Mattie H, Atun R. Artificial intelligence and algorithmic bias: implications for health systems. J Glob Health 2019;9(2):010318. doi:10.7189/jogh.09.020318.
54. Appleby J. Fake Botox put 4 on ventilators. USA Today. Feb. 22, 2005. Also at: https://usatoday30.usatoday.com/money/industries/health/drugs/2005-02-21-botoxside-usat_x.htm Accessed January 31, 2023
55. Sahinoglu S. Etik açısından tıpta estetik sorunları (Aesthetic problems in medicine in terms of ethics). Ankara Tıp Mecmuası (The Journal of the Faculty of Medicine of Ankara) 1994;47:65-74.
56. Keskinbora KH. Medical ethics considerations on artificial intelligence. Journal of Clinical Neuroscience 2019;64:277-282. doi: 10.1016/j.jocn.2019.03.001