Epidural Stimulation of the Lumbosacral Spinal Cord After Basal Ganglia Haemorrhage: A Case Study
Main Article Content
Abstract
Lumbar epidural spinal cord stimulation (SCS) was used to improve motor function in a 50-yr old patient who suffered hemiparesis due to a basal ganglia haemorrhagic stroke. Spinal cord stimulation targeted at the dorsal root afferent fibres at the conus improved the tonic control of the muscles at the knee and ankle joints. This allowed the patient better left knee and foot motor control. The improvement was documented initially during ambulation on a treadmill using decreasing body weight support and subsequently when using walking aids. Our observation is consistent with previous human data suggesting that in humans with brain lesions, the stimulation of preserved neural circuitry can increase spontaneous muscle tone in affected muscles and improve locomotion.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2 Sutherland, G. R. & Auer, R. N. Primary intracerebral hemorrhage. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 13, 511-517, doi:10.1016/j.jocn.2004.12.012 (2006).
3 Garibi, J., Bilbao, G., Pomposo, I. & Hostalot, C. Prognostic factors in a series of 185 consecutive spontaneous supratentorial intracerebral haematomas. British journal of neurosurgery 16, 355-361, doi:10.1080/0268869021000007579 (2002).
4 Stroke epidemiological data of nine Asian countries. Asian Acute Stroke Advisory Panel (AASAP). Journal of the Medical Association of Thailand = Chotmaihet thangphaet 83, 1-7 (2000).
5 Broderick, J. et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Stroke 38, 2001-2023, doi:10.1161/STROKEAHA.107.183689 (2007).
6 Urban, P. P. et al. Occurence and clinical predictors of spasticity after ischemic stroke. Stroke 41, 2016-2020, doi:10.1161/STROKEAHA.110.581991 (2010).
7 Sharififar, S., Shuster, J. J. & Bishop, M. D. Adding electrical stimulation during standard rehabilitation after stroke to improve motor function. A systematic review and meta-analysis. Annals of physical and rehabilitation medicine 61, 339-344, doi:10.1016/j.rehab.2018.06.005 (2018).
8 Chen, S. C. et al. Effects of surface electrical stimulation on the muscle-tendon junction of spastic gastrocnemius in stroke patients. Disability and rehabilitation 27, 105-110, doi:10.1080/09638280400009022 (2005).
9 Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annual review of neuroscience 21, 149-186, doi:10.1146/annurev.neuro.21.1.149 (1998).
10 Cioni, B., Meglio, M. & Zamponi, A. Effect of spinal cord stimulation on motor performances in hemiplegics. Stereotactic and functional neurosurgery 52, 42-52, doi:10.1159/000099485 (1989).
11 Visocchi, M., Cioni, B., Pentimalli, L. & Meglio, M. Increase of cerebral blood flow and improvement of brain motor control following spinal cord stimulation in ischemic spastic hemiparesis. Stereotactic and functional neurosurgery 62, 103-107, doi:10.1159/000098604 (1994).
12 Quinn, T. J., McArthur, K., Dawson, J., Walters, M. R. & Lees, K. R. Reliability of structured modified rankin scale assessment. Stroke 41, e602; author reply e603, doi:10.1161/STROKEAHA.110.590547 (2010).
13 Rizkallah, M., El Abiad, R., Badr, E. & Ghanem, I. Positional disappearance of motor evoked potentials is much more likely to occur in non-idiopathic scoliosis. Journal of children's orthopaedics 13, 206-212, doi:10.1302/1863-2548.13.180102 (2019).
14 Formento, E. et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nature neuroscience 21, 1728-1741, doi:10.1038/s41593-018-0262-6 (2018).
15 Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 65-71, doi:10.1038/s41586-018-0649-2 (2018).
16 Proske, U. & Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiological reviews 92, 1651-1697, doi:10.1152/physrev.00048.2011 (2012).
17 Sanes, J. N., Mauritz, K. H., Dalakas, M. C. & Evarts, E. V. Motor control in humans with large-fiber sensory neuropathy. Human neurobiology 4, 101-114 (1985).
18 Asanuma, H. & Mackel, R. Direct and indirect sensory input pathways to the motor cortex; its structure and function in relation to learning of motor skills. The Japanese journal of physiology 39, 1-19, doi:10.2170/jjphysiol.39.1 (1989).
19 Tanei, T. et al. Predictive Factors Associated with Pain Relief of Spinal Cord Stimulation for Central Post-stroke Pain. Neurologia medico-chirurgica 59, 213-221, doi:10.2176/nmc.oa.2018-0292 (2019).
20 Park, S. W., Wolf, S. L., Blanton, S., Winstein, C. & Nichols-Larsen, D. S. The EXCITE Trial: Predicting a clinically meaningful motor activity log outcome. Neurorehabilitation and neural repair 22, 486-493, doi:10.1177/1545968308316906 (2008).