Opiate Sensitivity in Fruit Flies

Main Article Content

Nabil Karnib Brandon Long Moira van Staaden Jon E. Sprague F. Scott Hall Daniel Jacobson Robert Huber

Abstract

Substance use disorder is a debilitating clinical condition in which behavioral dependence results from biological, environmental, genetic, and psychosocial factors. An epidemic surrounding the use and abuse of opioids is ravaging the world. While considerable efforts have explored the social drivers of addiction, a deeper understanding of biological causes and genetic vulnerabilities, preventative interventions, and effective treatments, have all proven elusive. This perspective article aims to remind readers that addictive natural compounds such as cocaine, nicotine, cathinone, or morphine, evolved as defensive metabolites to deter insect herbivory. The molecular mechanisms underlying motivational seeking and learning/reward show remarkable conservation since their early emergence in bilateral metazoans. An extended coevolutionary arms race subsequently weaponized these compounds into disruptors of learning, motivation, and incentivized attention. When plant chemical defenses attack insect physiology, humans are rendered susceptible due to strong conservation in the underlying molecular machinery. This perspective addresses the paradox that opiates were shaped to target insect neuropharmacology, even though this taxon appears to lack the recognized opioid receptor clade of mammals. We argue that the link is to be found in the allatostatin receptor, a basal ortholog of opioid receptors. Moreover, preliminary evidence indicates that morphine reduces Drosophila feeding and locomotion, concordant with a purported role as a defensive compound reducing herbivory. An implementation via allatostatin-mediated mechanisms is likely. This research argues for a broader heuristic perspective of substance abuse and a recognition of the evolutionary constraints that have likely shaped the biological drivers of opioid sensitivity and of its behavioral targets.

Keywords: Substance use disorder, morphine, fentanyl, opioid addiction, plant-insect coevolution

Article Details

How to Cite
KARNIB, Nabil et al. Opiate Sensitivity in Fruit Flies. Medical Research Archives, [S.l.], v. 11, n. 4, apr. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3711>. Date accessed: 23 nov. 2024. doi: https://doi.org/10.18103/mra.v11i4.3711.
Section
Research Articles

References

[1] Hedegaard H, Miniño A, Spencer MR, Warner M. Drug Overdose Deaths in the United States, 1999–2020. Published online 2021. doi:10.15620/cdc:112340
[2] CDC. Drug overdose deaths in the US top 100,000 annually. Atlanta: Centers for Disease Control and Prevention. Published online 2021.
[3] Kadam M, Sinha A, Nimkar S, Matcheswalla Y, De Sousa A. A Comparative Study of Factors Associated with Relapse in Alcohol Dependence and Opioid Dependence. Indian J Psychol Med. 2017;39(5):627-633.
[4] Khan TA, Dutta A, Subedi S. Factors Associated with Relapse in Men with Alcohol Dependence Versus Opioid Dependence: A Comparative Study From Western Nepal. Journal of Nepalgunj Medical College. 2018;16(2):69-73. doi:10.3126/jngmc.v16i2.24888
[5] Sjoerds Z, Luigjes J, van den Brink W, Denys D, Yücel M. The role of habits and motivation in human drug addiction: a reflection. Front Psychiatry. 2014;5:8.
[6] Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):247-291.
[7] Solomon RL. The opponent-process theory of acquired motivation: the costs of pleasure and the benefits of pain. Am Psychol. 1980;35(8):691-712.
[8] Koob GF, Le Moal M. Review. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3113-3123.
[9] Corbit LH, Nie H, Janak PH. Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry. 2012;72(5):389-395.
[10] Zapata A, Minney VL, Shippenberg TS. Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J Neurosci. 2010;30(46):15457-15463.
[11] Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry. 2004;12(6):305-320.
[12] Gould TJ. Addiction and cognition. Addict Sci Clin Pract. 2010;5(2):4-14.
[13] Quintero G. Role of nucleus accumbens glutamatergic plasticity in drug addiction. Neuropsychiatric Disease and Treatment. Published online 2013:1499. doi:10.2147/ndt.s45963
[14] Alcaro A, Huber R, Panksepp J. Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Res Rev. 2007;56(2):283-321.
[15] Hyman SE. Addiction: A Disease of Learning and Memory. FOCUS. 2007;5(2):220-228. doi:10.1176/foc.5.2.foc220
[16] Wink M. Plant Secondary Metabolites Modulate Insect Behavior-Steps Toward Addiction? Front Physiol. 2018;9:364.
[17] Erb M, Kliebenstein DJ. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020;184(1):39-52.
[18] Karnib N, van Staaden MJ. The Deep Roots of Addiction: A Comparative Perspective. Brain Behav Evol. 2020;95(5):222-229.
[19] Nargeot R, Bédécarrats A. Associative Learning in Invertebrates. The Oxford Handbook of Invertebrate Neurobiology. Published online 2019:536-558. doi:10.1093/oxfordhb/9780190456757.013.32
[20] Hawkins RD, Kandel ER, Bailey CH. Molecular mechanisms of memory storage in Aplysia. Biol Bull. 2006;210(3):174-191.
[21] Giurfa M, Sandoz JC. Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem. 2012;19(2):54-66.
[22] Menzel R, Benjamin P. Invertebrate Learning and Memory. Academic Press; 2013.
[23] Ginsburg S, Jablonka E. The evolution of associative learning: A factor in the Cambrian explosion. J Theor Biol. 2010;266(1):11-20.
[24] Hume D. A Treatise of Human Nature: Being an Attempt to Introduce the Experimental Method of Reasoning Into Moral Subjects.; 1817.
[25] Shettleworth SJ. Cognition, Evolution, and Behavior. Oxford University Press; 2010.
[26] Pontes AC, Mobley RB, Ofria C, Adami C, Dyer FC. The Evolutionary Origin of Associative Learning. Am Nat. 2020;195(1):E1-E19.
[27] Holden-Dye L, Walker RJ. Invertebrate models of behavioural plasticity and human disease. Brain Neurosci Adv. 2018;2:2398212818818068.
[28] Surguchov A. Invertebrate Models Untangle the Mechanism of Neurodegeneration in Parkinson’s Disease. Cells. 2021;10(2):407. doi:10.3390/cells10020407
[29] Walters ET, Williams AC de C. Evolution of mechanisms and behaviour important for pain. Philos Trans R Soc Lond B Biol Sci. 2019;374(1785):20190275.
[30] Walters ET. Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. Front Physiol. 2018;9:1049.
[31] van Staaden M, Huber R. Editorial: Invertebrate Models of Natural and Drug-Sensitive Reward. Front Physiol. 2019;10:490.
[32] Huber R, van Staaden M. Invertebrate Models of Natural and Drug‐Sensitive Reward. Frontiers Media SA; 2019.
[33] Dohrmann M, Wörheide G. Dating early animal evolution using phylogenomic data. Sci Rep. 2017;7(1):3599.
[34] Birgül N, Weise C, Kreienkamp HJ, Richter D. Reverse physiology in drosophila: identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. EMBO J. 1999;18(21):5892-5900.
[35] Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001;11(6):1114-1125.
[36] Konopka RJ, California Institute of Technology. Division of Biology. Circadian Clock Mutants of Drosophila Melanogaster.; 1972.
[37] Mariano V, Achsel T, Bagni C, Kanellopoulos AK. Modelling Learning and Memory in Drosophila to Understand Intellectual Disabilities. Neuroscience. 2020;445:12-30.
[38] Rajan A, Perrimon N. Of flies and men: insights on organismal metabolism from fruit flies. BMC Biol. 2013;11:38.
[39] Bangi E. Drosophila at the intersection of infection, inflammation, and cancer. Front Cell Infect Microbiol. 2013;3:103.
[40] Neely GG, Gregory Neely G, Hess A, Costigan M, Keene AC, Goulas S, et al. A Genome-wide Drosophila Screen for Heat Nociception Identifies α2δ3 as an Evolutionarily Conserved Pain Gene. Cell. 2010;143(4):628-638. doi:10.1016/j.cell.2010.09.047
[41] King EG, Macdonald SJ, Long AD. Properties and power of the Drosophila Synthetic Population Resource for the routine dissection of complex traits. Genetics. 2012;191(3):935-949.
[42] Baker BM, Carbone MA, Huang W, Anholt RRH, Mackay TFC. Genetic basis of variation in cocaine and methamphetamine consumption in outbred populations of. Proc Natl Acad Sci U S A. 2021;118(23). doi:10.1073/pnas.2104131118
[43] Kaun KR, Devineni AV, Heberlein U. Drosophila melanogaster as a model to study drug addiction. Hum Genet. 2012;131(6):959-975.
[44] Philyaw TJ, Rothenfluh A, Titos I. The Use of Drosophila to Understand Psychostimulant Responses. Biomedicines. 2022;10(1):119. doi:10.3390/biomedicines10010119
[45] Bainton RJ, Tsai LT, Singh CM, Moore MS, Neckameyer WS, Heberlein U. Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol. 2000;10(4):187-194.
[46] Kanno M, Hiramatsu S, Kondo S, Tanimoto H, Ichinose T. Voluntary intake of psychoactive substances is regulated by the dopamine receptor Dop1R1 in Drosophila. Sci Rep. 2021;11(1):3432.
[47] Devineni AV, Heberlein U. Preferential ethanol consumption in Drosophila models features of addiction. Curr Biol. 2009;19(24):2126-2132.
[48] Kaun KR, Azanchi R, Maung Z, Hirsh J, Heberlein U. A Drosophila model for alcohol reward. Nat Neurosci. 2011;14(5):612-619.
[49] Petruccelli E, Feyder M, Ledru N, Jaques Y, Anderson E, Kaun KR. Alcohol Activates Scabrous-Notch to Influence Associated Memories. Neuron. 2018;100(5):1209-1223.e4.
[50] Lasek AW, Kapfhamer D, Kharazia V, Gesch J, Giorgetti F, Heberlein U. Lmo4 in the nucleus accumbens regulates cocaine sensitivity. Genes Brain Behav. 2010;9(7):817-824.
[51] Scholz H, Franz M, Heberlein U. The hangover gene defines a stress pathway required for ethanol tolerance development. Nature. 2005;436(7052):845-847.
[52] Elphick MR, Mirabeau O, Larhammar D. Evolution of neuropeptide signalling systems. J Exp Biol. 2018;221(Pt 3). doi:10.1242/jeb.151092
[53] Birgül N, Weise C, Kreienkamp HJ, Richter D. Reverse physiology in drosophila: identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. EMBO J. 1999;18(21):5892-5900.
[54] Hewes RS. Neuropeptides and Neuropeptide Receptors in the Drosophila melanogaster Genome. Genome Research. 2001;11(6):1126-1142. doi:10.1101/gr.169901
[55] Hauser F. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data. Briefings in Functional Genomics and Proteomics. 2006;4(4):321-330. doi:10.1093/bfgp/eli003
[56] Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols. 2015;10(6):845-858. doi:10.1038/nprot.2015.053
[57] Stevens CW. The evolution of vertebrate opioid receptors. Front Biosci . 2009;14(4):1247-1269.
[58] Schmidtke P, Le Guilloux V, Maupetit J, Tuffery P. fpocket: online tools for protein ensemble pocket detection and tracking. Nucleic Acids Research. 2010;38(Web Server):W582-W589. doi:10.1093/nar/gkq383
[59] Guilloux VL, Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: An open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10(1). doi:10.1186/1471-2105-10-168
[60] Panksepp J, Moskal J. Dopamine and SEEKING: Subcortical “Reward” Systems and Appetitive Urges. Handbook of Approach and Avoidance Motivation. doi:10.4324/9780203888148.ch5
[61] Hergarden AC, Tayler TD, Anderson DJ. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proceedings of the National Academy of Sciences. 2012;109(10):3967-3972. doi:10.1073/pnas.1200778109
[62] Bendena WG, Boudreau JR, Papanicolaou T, Maltby M, Tobe SS, Chin-Sang ID. A Caenorhabditis elegans allatostatin/galanin-like receptor NPR-9 inhibits local search behavior in response to feeding cues. Proc Natl Acad Sci U S A. 2008;105(4):1339-1342.
[63] Hentze JL, Carlsson MA, Kondo S, Nässel DR, Rewitz KF. The Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in Drosophila. Sci Rep. 2015;5:11680.
[64] Kubrak O, Koyama T, Ahrentløv N, Jensen L, Malita A, Naseem MT, et al. The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress. Nat Commun. 2022;13(1):692.
[65] Hergarden AC, Tayler TD, Anderson DJ. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc Natl Acad Sci U S A. 2012;109(10):3967-3972.
[66] Yamagata N, Hiroi M, Kondo S, Abe A, Tanimoto H. Suppression of Dopamine Neurons Mediates Reward. PLoS Biol. 2016;14(12):e1002586.
[67] Donelson NC, Kim EZ, Slawson JB, Vecsey CG, Huber R, Griffith LC. High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the “tracker” program. PLoS One. 2012;7(5):e37250.
[68] Murphy KR, Park JH, Huber R, Ja WW. Simultaneous measurement of sleep and feeding in individual Drosophila. Nature Protocols. 2017;12(11):2355-2359. doi:10.1038/nprot.2017.096
[69] Wink M. Plant Secondary Metabolites Modulate Insect Behavior-Steps Toward Addiction? Frontiers in Physiology. 2018;9. doi:10.3389/fphys.2018.00364
[70] Dvořáček J, Kodrík D. Drosophila reward system - A summary of current knowledge. Neurosci Biobehav Rev. 2021;123:301-319.
[71] Urlacher E, Soustelle L, Parmentier ML, Verlinden H, Gherardi MJ, Fourmy D, et al. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function? PLoS One. 2016;11(1):e0146248.
[72] Bachtel ND, Hovsepian GA, Nixon DF, Eleftherianos I. Allatostatin C modulates nociception and immunity in Drosophila. Scientific Reports. 2018;8(1). doi:10.1038/s41598-018-25855-1
[73] Tuulari JJ, Tuominen L, de Boer FE, Hirvonen J, Helin S, Nuutila P, et al. Feeding Releases Endogenous Opioids in Humans. J Neurosci. 2017;37(34):8284-8291.