The Genetic and Genomic Landscape of Human Reproductive Disorders: An Overview with Our Experience

Main Article Content

Ashutosh Halder Priyal Sharma Ranjana Rana Amanpreet Kaur Kalsi Manish Jain Mona Sharma

Abstract

Genetics and genomics play a role in the causation of various human diseases. A large number of human reproductive disorders also arise as a result of genetic and genomic abnormalities. Reproductive disorders associated with predominantly genetics and genomic abnormalities are infertility, early pregnancy loss, congenital malformations, difference or disorder of sex development and reproductive cancers. The genetic etiology of human reproductive disorders is increasing with improved molecular biology techniques such as DNA microarray and next-generation sequencing.


Infertility is one of the significant areas of reproductive disorders where genetics/genomics plays a substantial role and may result from chromosomal, copy number variation, Yq & pseudo autosomal region microdeletion/microduplication, gene mutation (monogenic, oligogenic, polygenic), multifactorial, epigenetic, mitochondrial, etc. abnormalities. All idiopathic infertile couples should be screened for genetic disorders before assisted reproduction to prevent transmission, if any, in offspring. Pregnancy wastage in early pregnancy is very high (about 70%) and is mainly related to chromosome number, copy number variation, and some monogenic or epigenetic abnormalities. Therefore, all early pregnancy loss cases should also be tested for genetic causes. Congenital malformations are structural defects in embryo, fetus, or newborns and affect about 3% (major malformations) of all births. The malformations could be due to the abnormalities of chromosomes, copy number variation, monogenic, oligogenic, multifactorial, or environmental. Array CGH &/or NGS should be used as the first step to screen congenital malformations. Differences/disorder of sex development is a developmental defect in which the determination and/or differentiation of chromosomal, gonadal, or phenotypic/anatomic sex is abnormal. It is a common disorder and is primarily related to genetic abnormalities. Therefore, a precise diagnosis, mainly through an array CGH and/or NGS, is crucial for the proper management to prevent future psychosexual problems and another birth with the disorder. Cancer is a genomic disorder characterized by genomic instability (due to a defect in DNA repair mechanism), uncontrolled replication (due to lack of response to inhibitory factors/loss of contact inhibition), neo-angiogenesis, invasion and metastasis. All cancer cases should be investigated for genomic markers (both hereditary and somatic) for precise diagnosis, prognosis, and genetic counseling. In this review, we will try to evaluate the role of genetics and genomics in the above-mentioned reproductive disorders, along with genetic & genomic techniques used and reproductive counseling in addition to our experiences.  

Keywords: Reproductive Disorders, Reproductive Technologies, Genetics & Genomics, Array Comparative Genomic Hybridization, Whole Exome Sequencing, Reproductive Genetic Counselling

Article Details

How to Cite
HALDER, Ashutosh et al. The Genetic and Genomic Landscape of Human Reproductive Disorders: An Overview with Our Experience. Medical Research Archives, [S.l.], v. 11, n. 3, mar. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3731>. Date accessed: 26 apr. 2024. doi: https://doi.org/10.18103/mra.v11i3.3731.
Section
Review Articles

References

1. Winkler HL. Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche. Jena: Verlag Fischer (1920).

2. Yadav SP. The wholeness in suffix -omics, -omes, and the word om. J Biomol Tech. 2007;18(5):277.

3. Halder A. Advances in Cytogenetics. JBR J Cl Diag Res. 2013; 16:e101.doi:10.4172/jcdr.1000e101.

4. Halder A. Cytogenetics to Cytogenomics: transition from Chromosome to DNA sequence. The Global J Hum Genet Gene Therapy. 2013; 1(2):90-104.

5. Halder A, Halder S, Fauzdar A, Kumar A. Molecular approaches of chromosome analysis: an overview. Proc. Indian Nat. Sci. Acad. 2004;B70(2):153-221.

6. Halder A, Park YK. Identification of the appropriate tissue from formalin fixed perinatal autopsy material for chromosomal ploidy detection by interphase FISH. Ind J Med Res. 1999; 110: 102-106.

7. Halder A, Tutschek B. Analysis of meiotic segregation in human nondecondensed interphase spermatozoa by multicolor rapid direct FISH. Ind J Med Res. 1998;107:94-97.

8. Fauzdar A, Sharma RK, Kumar A, Halder A. A Preliminary Study on Chromosome Aneuploidy and Mosaicism in Early Preimplantation Human Embryo by Fluorescence In Situ Hybridization. Ind J Med Res 2008;128(3):287-293.

9. Halder A, Jain M and Chaudhary I. Rapid Detection of Chromosome X, Y, 13, 18 & 21 Aneuploidies by Primed In Situ Labeling/Synthesis (PRINS) Technique. Ind J Hum Genet 2013;19(1):14-17.

10. Halder A. Assessment of DNA microarray for evaluation of microdeletion syndromes. Ind J Hum Genet 2014;20 (suppl 1):S23

11. Halder A, Halder S, Fauzdar A. A Preliminary Investigation on Molecular Basis for Clinical Aggressiveness in Cervical Carcinoma by Comparative Genomic Hybridization and Conventional Fluorescent In-situ Hybridization. Ind J of Med Res. 2005;122:434-446.

12. Halder A, Jain M, Kalsi AP. SNP Microarray in FISH Negative Clinically Suspected 22q11.2 Microdeletion Syndrome. Scientifica 2016;2016:18 pages
13. Hastings PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number. Nat Rev Genet. 2009;10(8):551-564.

14. Feuk L, Carson A, Scherer S. Structural variation in the human genome. Nat Rev Genet 2006;7:85–97.

15. Lee C, Iafrate AJ, Brothman AR. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat Genet. 2007;39(7 Suppl):S48-54.

16. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444-454.

17. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet 2011;12:363-376.

18. McCarroll SA, Kuruvilla FG, Korn JM, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet. 2008;40:1166–74.

19. Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451-81.

20. Hu L, Yao X, Huang H, et al. Clinical significance of germline copy number variation in susceptibility of human diseases. J Genet Genomics. 2018;45(1):3-12.

21. Jonas RK, Montojo CA, Bearden CE. The 22q11.2 deletion syndrome as a window into complex neuropsychiatric disorders over the lifespan. Biol Psychiatry. 2014;75(5):351-60.

22. Morrow EM. Genomic copy number variation in disorders of cognitive development. J Am Acad Child Adolesc Psychiatry. 2010;49(11):1091-104.

23. Mabb AM, Judson MC, Zylka MJ, Philpot BD. Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci. 2011;34(6):293-303.

24. Lauer S, Gresham D. An evolving view of copy number variants. Curr Genet. 2019;65(6):1287-1295.

25. Halder A. Non-invasive Prenatal Testing. EC Gynaecology 2016;3(5):365-367.

26. Mouawia H, Saker A, Jais JP, et al. Circulating trophoblastic cells provide genetic diagnosis in 63 fetuses at risk for cystic fibrosis or spinal muscular atrophy. Reprod Biomed Online 2012; 25:508–520.

27. Sherlock J, Halder A, Tutschek B, Rodeck C, Adinolfi M. Prenatal detection of fetal aneuploidies using transcervical cell samples. J Med Genet. 1997; 34: 302-305.

28. Halder A. Human Reproductive Genetics: Emerging Technologies and Clinical Applications. Indian J Med Res 2022; Dec 13. DOI: 10.4103/ijmr.ijmr_145_22.

29. Gurunath S, Pandian Z, Anderson RA, Bhattacharya S. Defining infertility--a systematic review of prevalence studies. Hum Reprod Update. 2011;17(5):575-88.

30. Rostad B, Schei B, Sundby J. Fertility in Norwegian women: results from a population-based health survey. Scand J Public Health. 2006;34(1):5-10.

31. Biswas L, Tyc K, El Yakoubi W, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction. 2021;161(2):R13-R35.

32. Halder A. Reproductive Genetics. JBR J Clin Diag Res. 2016;4:106 (2 pages).doi:10.4172/2376-0311.1000e106

33. Faddy M, Silber S, Gosden RG. Intra-cytoplasmic sperm Injection and Infertility. Nature Genet. 2001;29:131.

34. Kuroda S, Usui K, Sanjo H, Takeshima T, Kawahara T, Uemura H, Yumura Y. Genetic disorders and male infertility. Reprod Med Biol. 2020;19(4):314-322.

35. Beyaz CC, Gunes S, Onem K, Kulac T, Asci R. Partial Deletions of Y-Chromosome in Infertile Men with Non-obstructive Azoospermia and Oligoasthenoteratozoospermia in a Turkish Population. In Vivo. 2017;31(3):365-371.

36. Hayes FJ, Seminara SB, Crowley WF Jr. Hypogonadotropic hypogonadism. Endocrinol Metab Clin North Am. 1998;27(4):739-63.

37. Bianco SD, Kaiser UB. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat Rev Endocrinol. 2009;5(10):569-576.

38. Weiske WH, Salzler N, Schroeder-Printzen I, Weidner W. Clinical findings in congenital absence of the vasa deferentia. Andrologia 2000;32:13–18.

39. Patat O, Pagin A, Siegfried A, et al. Truncating mutations in the adhesion G protein-coupled receptor G2 gene ADGRG2 cause an X-linked congenital bilateral absence of vas deferens. Am J Hum Genet 2016;99:437-42.

40. Lee CH, Wu CC, Wu YN, Chiang HS. Gene copy number variations in Asian patients with congenital bilateral absence of the vas deferens. Hum Reprod 2009;24:748–755.

41. Shen Y, Yue HX, Li FP, et al. SCNN1B and CA12 play vital roles in occurrence of congenital bilateral absence of vas deferens (CBAVD). Asian J Androl 2019;21:525–527.

42. Wang YY, Lin YH, Wu YN, et al. Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice. PLoS Genet 2017;13:e1006715.

43. Halder A, Pandey D. CFTR gene variants in Indian CBAVD and its relevance in genetic counselling. Ind J Med Res 2020;152:535-537.

44. Del Castillo EB, Trabucco A, DE la Balze FA. Syndrome produced by absence of the germinal epithelium without impairment of the Sertoli or Leydig cells. J Clin Endocrinol Metab. 1947;7(7):493-502.

45. Hai Y, Hou J, Liu Y, et al. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin Cell Dev Biol. 2014;29:66-75.

46. Bar-Shira Maymon B, Yogev L, Yavetz H, et al. Spermatogonial proliferation patterns in men with azoospermia of different etiologies. Fertil Steril. 2003;80:1175–1180.

47. Halder A, Jain M and Kumar P. Primary Testicular Failure: An Overview. JBR J Clin Diag Res. 2015;3:1(1000e105).

48. Halder A, Kumar P, Jain M, Iyer VK. Copy number variations in testicular maturation arrest. Andrology. 2017;5(3):460-472.

49. Sharma A, Jain M, Halder A, Kaushal S. Identification of Genomic imbalances (CNVs as well as LOH) in Sertoli Cell Only Syndrome cases through Cytoscan Microarray. Gene 2021;30;801:145851.

50. Feng S, Cortessis VK, Hwang A, et al. Mutation analysis of INSL3 and GREAT/LGR8 genes in familial cryptorchidism. Urology. 2004;64(5):1032-1036.

51. Rodríguez F, Vallejos C, Giraudo F, et al. Copy number variants of Ras/MAPK pathway genes in patients with isolated cryptorchidism. Andrology. 2017;5(5):923-930.

52. Zhou-Cun A, Yang Y, Zhang SZ, Zhang W, Lin L. Chromosomal abnormality and Y chromosome microdeletion in Chinese patients with azoospermia or severe oligozoospermia. Yi Chuan Xue Bao. 2006;33(2):111-116.

53. Ferlin A, Dipresa S, Delbarba A, et al. Contemporary genetics-based diagnostics of male infertility. Expert Rev Mol Diagn. 2019;19(7):623-633.

54. Ferrás C, Fernandes S, Marques CJ, et al. AZF and DAZ gene copy specific deletion analysis in maturation arrest and Sertoli cell-only syndrome. Mol Hum Reprod. 2004; 10(10):755-61.

55. Halder A, Jain M, Kumar P. Primary Testicular Failure: Genotype Phenotype Correlation of 140 cases. Andrology 2014;2 (suppl. 1): 66-67.

56. Bojesen A, Juul S, Gravholt CH. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab. 2003;88:622-626.

57. Paulsen CA, Gordon DL, Carpenter RW, Gandy HM, Drucker WD. Klinefelter's syndrome and its variants: a hormonal and chromosomal study. Recent Prog Horm Res. 1968;24:321-363.

58. Zinn AR, Ramos P, Elder FF, et al. (2005) Androgen receptor CAGn repeat length influences phenotype of 47,XXY (Klinefelter) syndrome. J Clin Endocrinol Metab. 2005;90: 5041-5046.

59. Ferlin A, Zuccarello D, Zuccarello B, et al. Genetic alterations associated with cryptorchidism. JAMA. 2008;300:2271-2276.

60. Kumar P, Jain M, Kalsi AK, Halder A. Molecular characterization of a case of dicentric Y presented as non-obstructive azoospermia with testicular early maturation arrest. Andrologia. 2018;50(2). DOI:10.1111/and.12886.

61. Jain M, Mohan V, Chaudhary I, Halder A. Sertoli cell only syndrome and glaucoma in a SRY positive XX infertile male. J Clin Diagn Res. 2013;7(7):1457-1459.

62. Simpson JL. Male pseudohermaphroditism: genetics and clinical delineation. Hum Genet. 1978;44:1-49.

63. De Braekeleer M, Dao TN. Cytogenetic studies in male infertility: a review. Hum Reprod 1991;6:245–250.

64. Ferlin A, Arredi B, Speltra E, et al. Molecular and clinical characterization of Y chromosome microdeletions in infertile men: a 10-year experience in Italy. J Clin Endocrinol Metab. 2007;92(3):762-770.

65. Kuroda-Kawaguchi T, Skaletsky H, Brown LG, et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet. 2001;29(3):279-286.

66. Luddi A, Margollicci M, Gambera L, et al. Spermatogenesis in a man with complete deletion of USP9Y. N Engl J Med. 2009;360(9):881-885.

67. Foresta C, Moro E, Garolla A, Onisto M, Ferlin A. Y chromosome microdeletions in cryptorchidism and idiopathic infertility. J Clin Endocrinol Metab. 1999;84(10):3660-3665.

68. Mohandas TK, Speed RM, Yen PH, Chandley AC, Shapiro LJ. (1992) Role of the pseudoautosomal region in sex-chromosome pairing during male meiosis: meiotic studies in a man with a deletion of distal Xp. Am J Hum Genet. 1992;51:526–533.

69. Chandley AC, Goetz P, Hargreave TB, Joseph AM, Speed RM. On the nature and extent of XY pairing at meiotic prophase in man. Cytogenet Genome Res. 1985;38:241–247.

70. Speed RM, Chandley AC. Prophase of meiosis in human spermatocytes analysed by EM microspreading in infertile men and their controls and comparisons with human oocytes. Hum Genet. 1990;84:547–554.

71. Burgoyne PS, Baker TG. Perinatal oocyte loss in XO mice and its implications for the aetiology of gonadal dysgenesis in XO women. Reproduction. 1985;75:633–645.

72. Burgoyne PS, Mahadevaiah SK. Unpaired sex chromosomes and gametogenic failure. In: Chromosomes Today (eds. AT Sumner & AC Chandley), 1993 pp. 243–263. Springer Netherlands, Dordrecht.

73. Ledig S, Hiort O, Scherer G, et al. Array-CGH analysis in patients with syndromic and non-syndromic XY gonadal dysgenesis: evaluation of array CGH as diagnostic tool and search for new candidate loci. Hum Reprod. 2010;25(10):2637-2646.

74. Yan W. Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol Cell Endocrinol. 2009;306(1-2):24-32.

75. Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA. 2003;100(21):12201-1226.

76. Stouffs K, Lissens W. X chromosomal mutations and spermatogenic failure. Biochim Biophys Acta. 2012;1822(12):1864-1872.

77. Zitzmann M, Depenbusch M, Gromoll J, Nieschlag E. X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J Clin Endocrinol Metab. 2004;89(12):6208-6217.

78. Davis-Dao CA, Tuazon ED, Sokol RZ, Cortessis VK. Male infertility and variation in CAG repeat length in the androgen receptor gene: a meta-analysis. J Clin Endocrinol Metab. 2007;92(11):4319-4326.

79. Hess RA, Bunick D, Lee KH, et al. A role for oestrogens in the male reproductive system. Nature. 1997;390:509-512.

80. Robertson KM, O'Donnell L, Jones ME, et al. Impairment of spermatogenesis in mice lacking a functional aromatase (cyp 19) gene. Proc Natl Acad Sci USA. 1999;96:7986-7991.

81. Tapanainen JS, Aittomäki K, Min J, Vaskivuo T, Huhtaniemi IT. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet. 1997;15:205-206.

82. Takeda R, Ueda M. Pituitary-gonadal function in male patients with myotonic dystrophy- serum luteinizing hormone, follicle stimulating hormone and testosterone levels and histological damage of the testis. Acta Endocrinol (Copenh). 1977;84:382-389.

83. Nuti F, Krausz C. Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod Biomed Online. 2008;16:504-513.

84. Yatsenko AN, Georgiadis AP, Röpke A, et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med. 2015;372(22):2097-2107.

85. Teng YN, Lin YM, Sun HF, et al. Association of DAZL haplotypes with spermatogenic failure in infertile men. Fertil Steril. 2006;86:129-135.

86. Halder A, Chaddha V, Agarwal S, Fauzdar A. Absence of sperm meiotic segregation error of chromosomes 1, 9, 12, 13, 16, 18, 21, X and Y in a case of 100 % necrozoospermia. Asian J Androl. 2003;5(2):163-166.

87. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12:417–435.

88. Celse T, Cazin C, Mietton F, et al. Genetic analyses of a large cohort of infertile patients with globozoospermia, DPY19L2 still the main actor, GGN confirmed as a guest player. Hum Genet. 2021;140(1):43-57.

89. Beurois J, Cazin C, Kherraf ZE, et al. Genetics of teratozoospermia: Back to the head. Best Pract Res Clin Endocrinol Metab. 2020;34(6):101473.

90. Chen P, Saiyin H, Shi R, et al. Loss of SPACA1 function causes autosomal recessive globozoospermia by damaging the acrosome-acroplaxome complex. Hum Reprod. 2021;36(9):2587-2596.

91. Crafa A, Condorelli RA, La Vignera S, Calogero AE, Cannarella R. Globozoospermia: A Case Report and Systematic Review of Literature. World J Mens Health. 2023;41(1):49-80.

92. Yatsenko AN, O'Neil DS, Roy A, et al. Association of mutations in the zona pellucida binding protein 1 (ZPBP1) gene with abnormal sperm head morphology in infertile men. Mol Hum Reprod. 2012;18(1):14-21.

93. Dam AH, Koscinski I, Kremer JA, et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet. 2007;81(4):813-820.

94. Brahem S, Mehdi M, Elghezal H, Saad A. Study of aneuploidy rate and sperm DNA fragmentation in large-headed, multiple-tailed spermatozoa. Andrologia 2012;44:130–135.

95. Perrin A, Morel F, Moy L, et al. M. Study of aneuploidy in large-headed, multiple-tailed spermatozoa: case report and review of the literature. Fertil Steril. 2008;90:1201.e13-17.

96. Dieterich K, Soto Rifo R, Faure AK, et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet. 2007;39(5):661-665.

97. Ray PF, Toure A, Metzler-Guillemain C, et al. Genetic abnormalities leading to qualitative defects of sperm morphology or function: Genetic abnormalities leading to qualitative sperm defects. Clin Genet. 2017;91:217–232.

98. Liu G, Wang N, Zhang H, et al. Novel mutations in PMFBP1, TSGA10 and SUN5: Expanding the spectrum of mutations that may cause acephalic spermatozoa. Clin Genet 2020;97:938–939.

99. Li L, Sha Y, Wang X, et al. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa. Oncotarget. 2017;8:19914–19922.

100. Li L, Sha YW, Xu X, et al. DNAH6 is a novel candidate gene associated with sperm head anomaly. Andrologia. 2018. doi: 10.1111/and.12953.

101. Sha YW, Sha YK, Ji ZY, et al. TSGA10 is a novel candidate gene associated with acephalic spermatozoa. Clin Genet. 2018;93:776–783.

102. Sha YW, Sha YK, Ji ZY, et al. TSGA10 is a novel candidate gene associated with acephalic. Biallelic mutations in PMFBP1 cause acephalic spermatozoa. Clinical Genetics 2019;95:277–286.

103. Ye Y, Wei X, Sha Y, et al. Loss-of-function mutation in TSGA10 causes acephalic spermatozoa phenotype in human. Mol Genet Genomic Med. 2020:e1284.

104. Zhu F, Liu C, Wang F, et al. Mutations in PMFBP1 Cause Acephalic Spermatozoa Syndrome. Am J Hum Genet. 2018;103:188–199.

105. Ben Khelifa M, Coutton C, Zouari R, et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2014;94(1):95-104.

106. Li Y, Sha Y, Wang X, et al. DNAH2 is a novel candidate gene associated with multiple morphological abnormalities of the sperm flagella. Clin Genet. 2019;95(5):590-600.

107. Liu C, Tu C, Wang L, et al. Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. Am J Hum Genet. 2021;108(2):309-323.

108. Lv M, Liu W, Chi W, et al. Homozygous mutations in DZIP1 can induce asthenoteratospermia with severe MMAF. J Med Genet. 2020;57(7):445-453.

109. He X, Liu C, Yang X, et al. Bi-allelic Loss-of-function Variants in CFAP58 Cause Flagellar Axoneme and Mitochondrial Sheath Defects and Asthenoteratozoospermia in Humans and Mice. Am J Hum Genet. 2020;107(3):514-526.

110. Martinez G, Beurois J, Dacheux D, et al. Biallelic variants in MAATS1 encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility. J Med Genet. 2020;57(10):708-716.

111. Sha Y, Wei X, Ding L, et al. DNAH17 is associated with asthenozoospermia and multiple morphological abnormalities of sperm flagella. Ann Hum Genet. 2020;84(3):271-279.

112. Zhou Q, Xu M, Wang X, et al. Deficiency of TBL1XR1 causes asthenozoospermia. Andrologia. 2021;53(3):e13980.

113. Tu C, Cong J, Zhang Q, et al. Bi-allelic mutations of DNAH10 cause primary male infertility with asthenoteratozoospermia in humans and mice. Am J Hum Genet. 2021;108(8):1466-1477.

114. Yıldırım Y, Ouriachi T, Woehlbier U, et al. Linked homozygous BMPR1B and PDHA2 variants in a consanguineous family with complex digit malformation and male infertility. Eur J Hum Genet. 2018;26(6):876-885.

115. El Khouri E, Thomas L, Jeanson L, et al. Mutations in DNAJB13, Encoding an HSP40 Family Member, Cause Primary Ciliary Dyskinesia and Male Infertility. Am J Hum Genet. 2016;99(2):489-500.

116. Valdivia A, Irazusta J, Fernández D, Múgica J, Ochoa C, Casis L. Pyroglutamyl peptidase I and prolyl endopeptidase in human semen: increased activity in necrozoospermia. Regul Pept. 2004;122(2):79-84.

117. Fang S, Baker HWG. Male infertility and adult polycystic kidney disease are associated with necrospermia. Fertil Steril. 2003;79(3):643-644.

118. Mieusset R, Fauquet I, Chauveau D, et al. The spectrum of renal involvement in male patients with infertility related to excretory-system abnormalities: phenotypes, genotypes, and genetic counseling. J Nephrol. 2017;30(2):211-218.

119. Kumar A, Dumasia K, Deshpande S, Balasinor NH. Direct regulation of genes involved in sperm release by estrogen and androgen through their receptors and coregulators. J Steroid Biochem Mol Biol. 2017;171:66-74.

120. Kumar A, Dumasia K, Deshpande S, Gaonkar R, Balasinor NH. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis. Biochim Biophys Acta. 2016;1863(8):1996-2005.

121. Kumar A, Dumasia K, Gaonkar R, Sonawane S, Kadam L, Balasinor NH. Estrogen and androgen regulate actin-remodeling and endocytosis-related genes during rat spermiation. Mol Cell Endocrinol. 2015;404:91-101.

122. Shen C, Xu J, Zhou Q, et al. E3 ubiquitin ligase ASB17 is required for spermiation in mice. Transl Androl Urol. 2021;10(12):4320-4332.

123. Chen H, Li P, Du X, et al. Homozygous Loss of Septin12, but not its Haploinsufficiency, Leads to Male Infertility and Fertilization Failure. Front Cell Dev Biol. 2022;10:850052.

124. Yan Z, Fan Y, Wang F, et al. Novel Mutations in PLCZ1 Cause Male Infertility Due to Fertilization Failure or Poor Fertilization. Hum. Reprod. 2020;35(2):472–481.

125. Yuan P, Yang C, Ren Y, et al. A Novel Homozygous Mutation of Phospholipase C Zeta Leading to Defective Human Oocyte Activation and Fertilization Failure. Hum. Reprod. 2020;35(4):977–985.

126. WHO Recent advances in medically assisted conception. Report of a WHO Scientific Group. World Health Organ Tech Rep Ser. 1992;820:1-111.

127. Toniolo D. X-linked premature ovarian failure: a complex disease. Curr Opin Genet Dev. 2006;16:293–300.

128. Ledig S, Ropke A, Wieacker P. Copy number variants in premature ovar¬ian failure and ovarian dysgenesis. Sex Dev 2010;4:225-232.

129. Ledig S, Schippert C, Strick R, Beckmann MW, Oppelt PG, Wieacker P. Recurrent aberrations identified by array-CGH in patients with Mayer-Rokitansky-Küster-Hauser syndrome. Fertil Steril. 2011;95(5):1589-1594.

130. Kumar H, Halder A, Sharma M, Kalsi AK, Jain M. Dihydrotestosterone: a potential biomarker of hyperandrogenaemia in PCOS. J Clin and Diag Res. 2022;16(2):QC09-QC14.

131. Halder A, Kumar H, Sharma M, Jain M, Kalsi AK. Serum Anti-Müllerian hormone (AMH): most potential biomarker of PCOS from North India. Ind J Med Res. (IJMR_4608, in press)

132. Halder A, Kumar H, Sharma P, Sharma M, Jain M. Polycystic Ovary Syndrome (PCOS): An Overview and our experience. J Endocrin Reprod. 2022;26(3):127-152.

133. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J Clin Endocrinol Metab. 2006;91:2100-2104.

134. Kahsar-Miller MD, Nixon C, Boots LR, et al. Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS. Fertil Steril. 2001;75:53-58.

135. Admoni O, Israel S, Lavi I, et al. Hyperandrogenism in carriers of CYP21 mutations: The role of genotype. Clin Endocrinol (Oxf). 2006;64:645-651.

136. Trakakis E, Rizos D, Loghis C, et al. The prevalence of non-classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency in Greek women with hirsutism and polycystic ovary syndrome. Endocr J. 2008;55:33-39.

137. Sharma P, Jain M, Halder A. An investigation of steroid biosynthesis pathway genes in women with polycystic ovary syndrome. J Hum Reprod Sci. 2022;15:240-249.

138. Sharma P, Jain M, Halder A. Whole Exome Sequencing identifies rare variants in obesity- and hyperinsulinemia-related genes in PCOS patients with high BMI and fasting insulin. J Hum Reprod Sci. 2023 (under review)

139. Bruni V, Capozzi A, Lello S. The role of genetics, epigenetics and lifestyle in Polycystic Ovary Syndrome Development: The state of the art. Reprod Sci. 2022;29:668-679.

140. Mu L, Sun X, Tu M, Zhang D. Non-coding RNAs in Polycystic Ovary Syndrome: A systematic review and meta-analysis. Reprod Biol Endocrinol. 2021;19:10.

141. Zhang Y, Ho K, Keaton JM, et al. A genome-wide association study of Polycystic Ovary Syndrome identified from electronic health record. Am J Obstet Gynecol. 2020;223:559.

142. Reddy KR, Deepika ML, Supriya K, et al. CYP11A1 microsatellite (tttta)n polymorphism in PCOS women from South India. J Assist Reprod Genet. 2014;31:857-863.

143. Pall M, Azziz R, Beires J, Pignatelli D. The phenotype of hirsute women: a comparison of polycystic ovary syndrome and 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil Steril. 2010;94:684-689.

144. Yarman S, Dursun A, Oguz F, Alagol F. The prevalence, molecular analysis and HLA typing of late-onset 21-hydroxylase deficiency in Turkish woman with hirsutism and polycystic ovary. Endocr J. 2004;51:31-36.

145. Goodarzi MO, Jones MR, Li X, et al. Replication of association of DENND1A and THADA variants with Polycystic Ovary Syndrome in European cohorts. J Med Genet. 2012;49:90-95.

146. Shi Y, Zhao H, Shi Y, et al. Genome-wide association study identifies eight new risk loci for Polycystic Ovary Syndrome. Nat Genet. 2012;44:1020-1025.

147. Urbanek M, Sam S, Legro RS, Dunaif A. Identification of a Polycystic Ovary Syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metab. 2007;92:4191-4198.

148. Tan S, Scherag A, Janssen OE, et al. Large effects on body mass index and insulin resistance of fat mass and obesity associated gene (FTO) variants in patients with Polycystic Ovary Syndrome (PCOS). BMC Med Genet. 2010;11:12.

149. Tata B, Mimouni NEH, Barbotin AL, et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med. 2018;24:834-846.

150. Alebić MŠ, Stojanović N, Duhamel A, Dewailly D. The phenotypic diversity in per follicle anti mullerian hormone production in Polycystic Ovary Syndrome. Hum Reprod. 2015;30:1927-1933.

151. Li S, Zhu D, Duan H, Tan Q. The epigenomics of PCOS: from pathogenesis to clinical manifestations. Gynecol Endocrinol. 2016;32:942-946.

152. Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental etiology for Polycystic Ovary Syndrome? Hum Reprod Update. 2005;11:357-374.

153. Li Z, Huang H. Epigenetic abnormality: a possible mechanism underlying the fetal origin of Polycystic Ovary Syndrome. Med Hypotheses. 2008;70:638-642.

154. Jones MR, Chazenbalk G, Xu N, et al. Steroidogenic regulatory factor FOS is under expressed in Polycystic Ovary Syndrome (PCOS) adipose tissue and genetically associated with PCOS susceptibility. J Clin Endocrinol Metab. 2012;97:E1750-E1757.

155. Jiang LL, Xie JK, Cui JQ, et al. Promoter methylation of yes-associated protein (YAP1) gene in Polycystic Ovary Syndrome. Medicine (Baltimore). 2017;96(2):e5768.

156. Welt CK. Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol (Oxf). 2008;68(4):499-509.

157. Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787-808.

158. Thompson MW, McInnes RR, Willard HF. The sex chromosomes and their abnormalities. In Thompson MW, McInnes RR and Willard HF (eds). 1991. Genetics in Medicine. WB. Saunders, Philadelphia, 239–243

159. Huang C, Guo T, Qin Y. Meiotic Recombination Defects and Premature Ovarian Insufficiency. Front Cell Dev Biol. 2021;9:652407.

160. Sharma M, Halder A. Understanding Basic Concepts of Premature Ovarian Failure. EC Gynaecology 2021;10(11):25-36.

161. Allen EG, Sullivan AK, Marcus M, et al. Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum Reprod. 2007;22(8):2142-2152.

162. Sherman SL. Premature ovarian failure in the fragile X syndrome. Am J Med Genet. 2000;97(3):189-194.

163. Rana R, Sharma M, Halder A. New insights into the mechanism of pathogenesis of fragile X-associated premature ovarian failure. EC Gynecology 2022;11.7 (6 pages)

164. Wittenberger MD, Hagerman RJ, Sherman SL, et al. The FMR1 premutation and reproduction. Fertil Steril. 2007;87(3):456-465.

165. Marozzi A, Vegetti W, Manfredini E, et al. Association between idiopathic premature ovarian failure and fragile X premutation. Hum Reprod. 2000;15(1):197-202.

166. Murray A, Schoemaker MJ, Bennett CE, et al. Population-based estimates of the prevalence of FMR1 expansion mutations in women with early menopause and primary ovarian insufficiency. Genet Med. 2014;16(1):19-24.

167. Allen EG, Charen K, Hipp HS, et al. Refining the risk for fragile X-associated primary ovarian insufficiency (FXPOI) by FMR1 CGG repeat size. Genet Med. 2021;23(9):1648-1655.

168. Pastore LM, Johnson J. The FMR1 gene, infertility, and reproductive decision-making: a review. Front Genet. 2014;5:195.

169. Davison RM, Fox M, Conway GS. Mapping of the POF1 locus and identification of putative genes for premature ovarian failure. Mol Hum Reprod. 2000;6(4):314-318.

170. Shelling AN. Premature ovarian failure. Reproduction. 2010;140:633-641.

171. Goswami D, Conway GS. Premature ovarian failure. Hum Reprod. 2005;11:391-410.

172. Bione S, Rizzolio F, Sala C, et al. Mutation analysis of two candidate genes for premature ovarian failure, DACH2 and POF1B. Hum. Reprod. 2004;19:2759-2766.

173. Bione S, Sala C, Manzini C, et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am J Hum Genet. 1998;62(3):533-541.

174. Panda B, Rao L, Tosh D, et al. Germline study of AR gene of Indian women with ovarian failure. Gynecol Endocrinol. 2011;27(8):572-578.

175. Dixit H, Deendayal M, Singh L. Mutational analysis of the mature peptide region of inhibin genes in Indian women with ovarian failure. Hum Reprod. 2004;19(8):1760-1764.

176. Dixit H, Rao LK, Padmalatha V, et al. Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure. Menopause. 2005;12(6):749-754.

177. Harris SE, Chand AL, Winship IM, Gersak K, Aittomäki K, Shelling AN. Identification of novel mutations in FOXL2 associated with premature ovarian failure. Mol Hum Reprod. 2002;8(8):729-733.

178. Chand AL, Ponnampalam AP, Harris SE, Winship IM, Shelling AN. Mutational analysis of BMP15 and GDF9 as candidate genes for premature ovarian failure. Fertil Steril. 2006;86(4):1009-1012.

179. Qin Y, Choi Y, Zhao H, Simpson JL, Chen ZJ, Rajkovic A. NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 2007;81(3):576-581.

180. Rishi I, Halder A, Sharma JB, Jain M, Sharma M. Single Strand Conformation Polymorphism and Sequencing of HS6ST2 Gene in Patients of Idiopathic Premature Ovarian Failure. J Clin Diagn Res. 2020;14(2):GC01-GC08

181. Persani L, Rossetti R, Cacciatore C. Genes involved in human premature ovarian failure. J Mol Endocrinol. 2010;45(5):257-279.

182. Knauff EAH, Franke L, van Es MA, et al. Genome-wide association study in premature ovarian failure patients suggests ADAMTS19 as a possible candidate gene. Hum Reprod. 2009;24:2372-2378.

183. Aboura A, Dupas C, Tachdijan G, et al. Array comparative genomic hybridization profiling analysis reveals deoxyribonucleic acid copy number variations associated with premature ovarian failure. J Clin Endocrinl Metab. 2009;94:4540-4546.

184. McGuire MM, Bowden W, Engel NJ, Ahn HW, Kovanci E, Rajkovic A. Genomic analysis using high-resolution single-nucleotide polymor¬phism arrays reveals novel microdeletions associated with premature ovarian failure. Fertil Steril. 2011;95:1595-1600.

185. AlAsiri S, Basit S, Wood-Trageser MA, et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J Clin Invest. 2015;125:258-262.

186. Wood-Trageser MA, Gurbuz F, Yatsenko SA, et al. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability. Am J Hum Genet. 2014;95:258-262.

187. Wang J, Zhang W, Jiang H, Wu BL. Mutations in HFM1 in recessive primary ovarian insufficiency. N Engl J Med. 2014;370:972-974.

188. Fonseca DJ, Patiño LC, Suárez YC, et al. Next generation sequencing in women affected by nonsyndromic premature ovarian failure displays new potential causative genes and mutations. Fertil Steril. 2015;104(1):154-162.

189. Berwaer M, Martial JA, Davis JR, et al. Characterization of an up-stream promoter directing extrapituitary expression of the human prolactin gene. Mol. Endocrinol. Baltim. Md. 1994;8:635–642.

190. Bazan JF. Haemopoietic receptors and helical cytokines. Immunol Today. 1990;11:350–354.

191. Kalsi AK, Halder A, Jain M, Chaturvedi PK, Mathew M, Sharma JB. Association of raised levels of IL-4 and anti-TPO with hyperprolactinemia. Am J Reprod Immunol. 2019;81(3):e13085.

192. Kalsi AK, Halder A, Jain M, Chaturvedi PK, Sharma JB. Prevalence and reproductive manifestations of macroprolactinemia. Endocrine. 2019;63(2):332-340.

193. Grossmann M. Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med. 2014;370(10):976-977.

194. Molitch ME. Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med. 2014;370(10):977.

195. Newey PJ, Gorvin CM, Cleland SJ, et al. Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med. 2013;369(21):2012-2020.

196. Huang X, Wang L, Zhao S, et al. Pregnancy Induces an Immunological Memory Characterized by Maternal Immune Alterations Through Specific Genes Methylation. Front Immunol. 2021;12:686676.

197. Okae H, Toh H, Sato T, et al. Derivation of Human Trophoblast Stem Cells. Cell Stem Cell. 2018;22:50-63.

198. James JL, Saghian R, Perwick R, et al. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling. Human Reproduction. 2018;33:1430–1441.

199. Prescott J, Farland LV, Tobias DK, et al. A prospective cohort study of endometriosis and subsequent risk of infertility. Hum Reprod. 2016;31(7):1475-1482.

200. Treloar SA, Wicks J, Nyholt DR, et al. Genomewide linkage study in 1,176 affected sister pair families identifies a significant susceptibility locus for endometriosis on chromosome 10q26. Am J Hum Genet. 2005;77:365–376.

201. Wu MH, Hsiao KY, Tsai SJ. Endometriosis and possible inflammation markers. Gynecology and Minimally Invasive Therapy 2015;4:61-67.

202. Borghese B, Vaiman D, de Ziegler D, Chapron C. Endométriose et génétique : les gènes sont-ils responsables de la maladie ? [Endometriosis and genetics: what responsibility for the genes?]. J Gynecol Obstet Biol Reprod (Paris). 2010;39(3):196-207.

203. Kobayashi H, Imanaka S, Nakamura H, Tsuji A. Understanding the role of epigenomic, genomic and genetic alterations in the development of endometriosis (review). Mol Med Rep. 2014;9(5):1483-1505.

204. Pollacco J, Sacco K, Portelli M, Schembri-Wismayer P, Calleja-Agius J. Molecular links between endometriosis and cancer. Gynecol Endocrinol. 2012;28(8):577-581.

205. Yang W, Zhang Y, Fu F, Li R. High-resolution array-comparative genomic hybridization profiling reveals 20q13.33 alterations associated with ovarian endometriosis. Gynecol Endocrinol. 2013;29(6):603-607.

206. Bulun SE, Yilmaz BD, Sison C, et al. Endometriosis. Endocr Rev. 2019;40(4):1048-1079.

207. Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T. Role of Kras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med. 2005;11:63–70.

208. Jones RK, Searle RF, Bulmer JN. Apoptosis and bcl-2 expression in normal human endometrium, endometriosis and adenomyosis. Hum Reprod. 1998;13:3496–3502.

209. Wu Y, Strawn E, Basir Z, et al. Genomic alterations in ectopic and eutopic endometria of women with endometriosis. Gynecol Obstet Invest. 2006;62:148–159.

210. Guo SW, Wu Y, Strawn E, et al. Genomic alterations in the endometrium may be a proximate cause for endometriosis. Eur J Obstet Gynecol Reprod Biol. 2004;116:89–99.

211. Kobayashi H, Kajiwara H, Kanayama S, et al. Molecular pathogenesis of endometriosis-associated clear cell carcinoma of the ovary (review). Oncol Rep. 2009;22(2):233-240.

212. Sato N, Tsunoda H, Nishida M, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res. 2000;60:7052–7056.

213. Houshdaran S, Zelenko Z, Tamaresis JS, Irwin JC, Giudice LC. Abnormal epigenetic signature in eutopic endometrium of subjects with severe endometriosis. Reprod Sci. 2011;18:191A.

214. Guo SW. Epigenetics of endometriosis. Mol Hum Reprod. 2009;15:587–607.

215. Martin RH. Chromosomal abnormalities in human sperm. In: Robaire B, Hales BE, editor. Advances in Male-Mediated developmental toxicity. Vol. 518. New York, Plenum Press; 2003. pp. 181–188.

216. Plachot M. Chromosomal abnormalities in oocytes. Mol Cell Endocrinol. 2001;183 Suppl 1:S59-S63.

217. Plachot M, de Grouchy J, Cohen J, Salat-Baroux J. Anomalies chromosomiques de l'oeuf humain fécondé [Chromosome abnormalities of the fertilized human egg]. Reprod Nutr Dev. 1990;Suppl 1:83s-88s.

218. Zinaman MJ, Clegg ED, Brown CC, O'Connor J, Selevan SG. Estimates of human fertility and pregnancy loss. Fertil Steril. 1996;65(3):503-509.

219. Simpson JL. Causes of fetal wastage. Clin Obstet Gynecol. 2007;50(1):10-30.

220. Oniya O, Neves K, Ahmed B, Konje JC. A review of the reproductive consequences of consanguinity. Eur J Obstet Gynecol Reprod Biol. 2019;232:87-96.

221. Kalousek DK, Pantzar T, Tsai M, Paradice B. Early spontaneous abortion: morphologic and karyotypic findings in 3,912 cases. Birth Defects Orig Artic Series. 1993;29:53-61.

222. Gao J, Liu C, Yao F, et al. Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion. Mol Cytogenet. 2012;5(1):33.

223. Li H, Liu M, Xie M, et al. Submicroscopic chromosomal imbalances contribute to early abortion. Mol Cytogenet. 2018;11:41.

224. Bender Atik R, Christiansen OB, Elson J, et al. ESHRE guideline: recurrent pregnancy loss. Hum Reprod Open. 2018;2018(2):hoy004.

225. Coomarasamy A, Williams H, Truchanowicz E, et al. PROMISE: first-trimester progesterone therapy in women with a history of unexplained recurrent miscarriages - a randomised, double-blind, placebo-controlled, international multicentre trial and economic evaluation. Health Technol Assess. 2016;20(41):1-92.

226. Stern JJ, Dorfmann AD, Gutiérrez-Najar AJ, Cerrillo M, Coulam CB. Frequency of abnormal karyotypes among abortuses from women with and without a history of recurrent spontaneous abortion. Fertil Steril. 1996;65:250-253.

227. Ogasawara M, Aoki K, Okada S, Suzumori K. Embryonic karyotype of abortuses in relation to the number of previous miscarriages. Fertil Steril. 2000;73(2):300-304.

228. Halder A, Fauzdar A. Skewed sex ratio and low aneuploidy in recurrent early missed abortion. Indian J Med Res. 2006;124(1):41-50.

229. Carp H, Toder V, Aviram A, Daniely M, Mashiach S, Barkai G. Karyotype of the abortus in recurrent miscarriage. Fertil Steril. 2001;75:678-682.

230. Sheng YR, Hou SY, Hu WT, et al. Characterization of Copy-Number Variations and Possible Candidate Genes in Recurrent Pregnancy Losses. Genes (Basel). 2021;12(2):141.

231. Zhang X, Wu H, Gu Z, Yu Z, Lan L, Huang Q. Chromosomal Copy Number Variation Analysis in Pregnancy Products from Recurrent and Sporadic Miscarriage Using Next-Generation Sequencing. Reprod Sci. 2022;29(10):2927-2936.

232. Rajcan-Separovic E. Next generation sequencing in recurrent pregnancy loss-approaches and outcomes. Eur J Med Genet. 2020;63(2):103644.

233. Qiao Y, Wen J, Tang F, et al. Whole exome sequencing in recurrent early pregnancy loss. Mol Hum Reprod. 2016;22(5):364-372.

234. Murdoch S, Djuric U, Mazhar B, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38:300–302.

235. Wang CM, Dixon PH, Decordova S, et al. Identification of 13 novel NLRP7 mutations in 20 families with recurrent hydatidiform mole; missense mutations cluster in the leucine-rich region. J Med Genet. 2009;46(8):569-575.

236. Deveault C, Qian JH, Chebaro W, et al. NLRP7 mutations in women with diploid androgenetic and triploid moles: a proposed mechanism for mole formation. Hum Mol Genet. 2009;18(5):888-897.

237. Messaed C, Chebaro W, Di Roberto RB, et al; HM Collaborative Group. NLRP7 in the spectrum of reproductive wastage: rare non-synonymous variants confer genetic susceptibility to recurrent reproductive wastage. J Med Genet. 2011;48(8):540-548.

238. Huang JY, Su M, Lin SH, Kuo PL. A genetic association study of NLRP2 and NLRP7 genes in idiopathic recurrent miscarriage. Hum Reprod. 2013;28(4):1127-1134.

239. Parry DA, Logan CV, Hayward BE, et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet. 2011;89:451–458.

240. Docherty LE, Rezwan FI, Poole RL, et al. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun. 2015;6:8086.

241. Xu Y, Shi Y, Fu J, et al. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. Am J Hum Genet. 2016;99:744–752.

242. Maddirevula S, Awartani K, Coskun S, et al. A genomics approach to females with infertility and recurrent pregnancy loss. Hum Genet. 2020;139(5):605-613.

243. Qian J, Nguyen NMP, Rezaei M, et al. Biallelic PADI6 variants linking infertility, miscarriages, and hydatidiform moles. Eur J Hum Genet. 2018;26(7):1007-1013.

244. Preston FE, Rosendaal FR, Walker ID, et al. Increased fetal loss in women with heritable thrombophilia. Lancet. 1996;348:913–916.

245. Hassold T, Quillen SD, Yamane JA. Sex ratio in spontaneous abortions. Ann Hum Genet. 1983;47:39-47.

246. Kelly TE, Ferguson JE, Golden W. Survival of fetuses with 45,X: an instructive case and a hypothesis. Am J Med Genet. 1992;42:825-826.

247. Lebedev I. Molecular cytogenetics of recurrent missed abortions. Indian J Med Res. 2006;124(1):9-10.

248. Kalter, I.T. and Warkany, J. Congenital Malformation Etiologic Factors and Their Role in Prevention. Parts I and II. New Eng J Med. 1983;308:424-431, 491-497.

249. Nelson, K. and Holmes, L.B. (1989) Malformations Due to Presumed Spontaneous Mutations in Newborn Infants. New Eng J Med. 1989;320:19-23.

250. De Vigan C, Khoshnood B, Lhomme A, Vodovar V, Goujard J, Goffinet F. Prevalence and prenatal diagnosis of congenital malformations in the Parisian population: twenty years of surveillance by the Paris Registry of congenital malformations. J Gynecol Obstet Biol Reprod (Paris). 2005;34:8–16.

251. Lobo I, Zhaurova K. Birth defects: causes and statistics. Nature Education. 2008;1(1):18.

252. Christianson A, Howson CP, Modell B. Global report on birth defects. The hidden toll of dying and disabled children. March of Dimes Birth Defects Foundation, White Plains 2005

253. Dolk H, Loane M, Garne E. The prevalence of congenital anomalies in Europe. Adv Exp Med Biol. 2010;686:349–364.

254. Shazly SA, Abbas AM, Ali SS, Salem NZ. Integrative mid-trimester anomaly (IMTA) chart: a novel sonographic approach for syndromatic challenges (pilot study). J Matern Fetal Neonatal Med. 2016;29(6):885-891.

255. Halder A. Approach to Prenatal Fetal Malformations. EC Gynaecology. 2016;3(3):294-307.

256. Halder A. Lethal Developmental Defects: An Overview. Open J Obstet Gynecol. 2014;4:1006-1036

257. Flint J, Wilkie AO, Buckle VJ, Winter RM, Holland AJ, McDermid HE. The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nat Genet. 1995;9:132-40.

258. Vissers LE, De Vries BB, Osoegawa K, et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet. 2003;73:1261-1270.

259. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–764.

260. Hughes IA. Disorders of sex development: a new definition and classification. Best Pract Res Clin Endocrinol Metab. 2008;22:119-134.

261. Ogilvy-Stuart AL, Brain CE. Early assessment of ambiguous genitalia. Arch Dis Child 2004;89:401–407.

262. Baetens D, Verdin H, De Baere E, Cools M. Update on the genetics of differences of sex development (DSD). Best Pract Res Clin Endocrinol Metab. 2019;33(3):101271.

263. Biason-Lauber A. WNT4, RSPO1, and FOXL2 in sex development. Semin. Reprod. Med. 2012;30:387–395.

264. Ahmed SF, Hughes IA. The genetics of male undermasulinization. Clin Endocrinol. 2002;56:1–18.

265. Mamsen LS, Ernst EH, Borup R, et al. Temporal expression pattern of genes during the period of sex differentiation in human embryonic gonads. Sci Rep. 2017;7(1):15961.

266. Belville C, Marechal JD, Pennetier S, et al. Natural mutations of the anti-Mullerian hormone type II receptor found in persistent Mullerian duct syndrome affect ligand binding, signal transduction and cellular transport. Hum Mol Genet. 2009;18:3002–3013.

267. Ekici AB, Strissel PL, Oppelt PG, et al. HOXA10 and HOXA13 sequence variations in human female genital malformations including congenital absence of the uterus and vagina. Gene. 2013;518:267–272.

268. Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S. Defects of urogenital development in mice lacking Emx2. Development. 1997;124:1653–1664.

269. Mendelsohn C, Lohnes D, Decimo D, et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994;120:2749–2771.

270. Goodman FR, Bacchelli C, Brady AF, et al. Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am J Hum Genet. 2000;67:197–202.

271. Bouchard M, Souabni A, Mandler M, Neubüser A, Busslinger M. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 2002;16:2958–2970.

272. Mullen RD, Behringer RR. Molecular genetics of Müllerian duct formation, regression and differentiation. Sex Dev. 2014;8(5):281-96.

273. Belville C, Josso N, Picard JY. Persistence of Mullerian derivatives in males. Am J Med Genet 1999;89:218-223.

274. Halder A. 46, XY Disorder of Sex Development with Mullerian Ducts Remnants. J Clin Diagn Res. 2010;4:2169-2174.

275. Scolfaro MR, Cardinalli IA, Stuchi-Perez EG, et al. Morphometry and histology of gonads from 13 children with dysgenetic male pseudohermaphroditism. Arch Pathol Lab Med. 2001;125:652–656.

276. Halder A, Gupta RK. Male like external genitalia with epididymis in a case of 46,XX disorder of sex development due to congenital adrenal hyperplasia. J Res Med Sci. 2008;13(3):141-145.

277. Ludwig M, Beck A, Wickert L, et al. Female pseudohermaphroditism associated with a novel homozygous G-to-A (V370-to-M) substitution in the P-450 aromatase gene. J Pediatr Endocrinol Metab. 1998;11:657-664.

278. Heikkila M, Prunskaite R, Naillat F, et al. The partial female to male sex reversal in Wnt-4-deficient females involves induced expression of testosterone biosynthetic genes and testosterone production, and depends on androgen action. Endocrinology. 2005;146:4016-4023.

279. de Pater JM, Poot M, Beemer FA, et al. Virilization of the external genitalia and severe mental retardation in a girl with an unbalanced translocation 1;18. Eur J Med Genet. 2006;49:19-27.

280. Grumbach MM, Hughes IA, Cante FA. Disorders of sexual differentiation. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS, editors. Williams textbook of endocrinology. 10th Ed. Philadelphia: Saunders (Elsevier Science) 2003; p.913-926.

281. Baronio F, Ortolano R, Menabò S, et al. 46,XX DSD due to Androgen Excess in Monogenic Disorders of Steroidogenesis: Genetic, Biochemical, and Clinical Features. Int J Mol Sci. 2019;20(18):4605.

282. Hathi D, Goswami S, Sengupta N, Baidya A. A Novel Homozygous CYP19A1 Gene Mutation Causing Aromatase Deficiency. Cureus. 2022;14(2):e22059.

283. Halder A. Disorder of Sex Development: spectrum of disorder in a referral tertiary care hospital in Northern India. The Global Journal of Human Genetics & Gene Therapy. 2013;1 (2):77-89

284. Elzaiat M, McElreavey K, Bashamboo A. Genetics of 46,XY gonadal dysgenesis. Best Pract Res Clin Endocrinol Metab. 2022;36(1):101633.

285. Délot EC, Vilain EJ. Nonsyndromic 46,XX Testicular Disorders/Differences of Sex Development. 2003 Oct 30 [updated 2022 May 26]. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023.

286. Hughes LA, McKay-Bounford K, Webb EA, et al. Next generation sequencing (NGS) to improve the diagnosis and management of patients with disorders of sex development (DSD). Endocr Connect. 2019;8(2):100-110.

287. Ahmed SF, Alimusina M, Batista RL, et al. The Use of Genetics for Reaching a Diagnosis in XY DSD. Sex Dev. 2022;16(2-3):207-224.

288. Fukami M, Wada Y, Miyabayashi K, et al. CXorf6 is a causative gene for hypospadias. Nat Genet. 2006;38:1369–1371.

289. Fluck CE, Audi L, Fernandez-Cancio M, et al. Broad phenotypes of disorders/differences of sex development in MAMLD1 patients through oligogenic disease. Front Genet. 2019;10:746.

290. Camats N, Fluck CE, Audi L. Oligogenic origin of differences of sex development in humans. Int J Mol Sci. 2020;21:1809.

291. Li L, Gao F, Fan L, Su C, Liang X, Gong C. Disorders of sex development in individuals harbouring MAMLD1 variants: WES and interactome evidence of oligogenic inheritance. Front Endocrinol. 2020;11:582516.

292. Martinez de LaPiscina I, Flück CE. Genetics of human sexual development and related disorders. Curr Opin Pediatr. 2021;33(6):556-563.

293. McElreavey K, Bashamboo A. Monogenic forms of DSD: An update. Horm Res Paediatr. 2021. doi: 10.1159/000521381.

294. Yu PH, Tsai MC, Chiang CT, Wang HY, Kuo PL. Novel mutation of MAP3K1 gene in 46,XY DSD with complete gonadal dysgenesis. Taiwan J Obstet Gynecol. 2022;61(5):903-905.

295. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;142:1497.

296. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. (1999) Creation of human tumour cells with defined genetic elements. Nature. 1999;400:464-468.

297. Jain P, Wadhwa N, Joshi MK, Jain M, Halder A, Mishra K. Cellular mesenchymal epithelial transition (C-MET) gene copy number variation in gastric adenocarcinoma: A pilot search for new marker for targeted therapy in HER-2/neu resistance. Indian J Pathol Microbiol. 2020;63(1):86-89.

298. Halder A, Halder S, Fauzdar A. A Preliminary Investigation on Molecular Basis for Clinical Aggressiveness in Cervical Carcinoma by Comparative Genomic Hybridization and Conventional Fluorescent In-situ Hybridization. Ind J of Med Res. 2005;122:434-446.

299. Aggarwal D, Wadhwa N, Arora T, et al. Human telomerase RNA component (hTERC) gene expression and chromosome 7 ploidy correlate positively with histological grade of cervical intraepithelial neoplasia. Cytopathology. 2021;32(5):631-639.

300. Shukla B, Agarwal S, Suri V, et al. Assessment of 1p/19q status by fluorescence in situ hybridization assay: A comparative study in oligodendroglial, mixed oligoastrocytic and astrocytic tumors. Neurol India. 2009;57:559-566.

301. Koch L. Non-coding mutations in the driver seat. Nat Rev Genet. 2014;15:574–575.

302. Auffray C, Hood L. (2012) Systems biology and personalized medicine – the future is now. Biotechnol J 7: 938–939.

303. Ao A, Wells D, Handyside AH, Winston RM, Delhanty JD. Preimplantation genetic diagnosis of inherited cancer: familial adenomatous polyposis coli. J Assist Reprod Genet. 1998;15(3):140-144.

304. Halder A. Canceromics and P3 medicine (editorial). JBR J Clin Diagn Res. 2015;3:1 (1000e104).

305. Halder A. Reproductive Genetic Counselling in Genomic Era. EC Gynaecology 2015;2 (1):132-148.

306. Halder A, Kumar P, Jain M, Kalsi AP. Genomics: Tool to predict & prevent male infertility. Front Biosci (Schol Ed). 2017;9:448-508.

307. Simpson JL, Elias S (1994). Prenatal diagnosis of genetic disorders.p.61; In Creasy RK, Resnik R [eds.]: Maternal fetal medicine: Principle & practice. WB Saunders, Philadelphia.

308. Halder A, Jain M, Chaudhary I and Varma B. Chromosome 22q11.2 microdeletion in monozygotic twins with discordant phenotype and deletion size. Mol Cytogen. 2012;5:13.

309. Milunsky A (1992). Genetic disorders and the fetus: diagnosis, prevention & treatment. Ed 3. Baltimore, Johns Hopkins University Press.

310. Fragouli E, Wells D. Aneuploidy in the human blastocyst. Cytogenet Genome Res. 2011;133:149–159.

311. Gutierrez-Mateo C, Colls P, Sanchez-Garcia J, et al. Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. Fertil Steril. 2011;95:953–958.

312. Bonduelle M, Wennerholm U-B, Loft A, et al. A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injenction, in vitro fertilization and natural conception. Hum Reprod. 2005;20:413–419.

313. Hansen M, Kurinczuk JJ, Bower C, et al. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346:725–730.

314. De Rycke M, Liebaers I, Van Steirteghem A. Epigenetic risks related to assisted reproductive technologies. Risk analysis and epigenetic inheritance. Hum Reprod. 2002;17:2487–2494.

315. Jablonka E, Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Quarter Rev Biol. 2009;84:131–176.

316. van Montfoort AP, Hanssen LL, de Sutter P, et al. Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update. 2012;18:171–197.

317. Velker BA, Denomme MM, Mann MR. Embryo culture and epigenetics. Methods Mol Biol. 2012;912:399–421.

318. Marques CJ, Carvalho F, Souza M, et al. Genomic imprinting in disruptive spermatogenesis. Lancet. 2004;363:1700–1702.

319. Winston RM, Hardy K. Are we ignoring potential dangers of in vitro fertilization and related treatments? Nat Cell Biol Nat Med. 2002;8:S14–S18.

320. Iwarsson E, Lundqvist M, Inzunza J, et al. A high degree of aneuploidy in frozen – thawed human preimplantation embryos. Hum Genet. 1999;104:376–382.