Inhibition of Cytochrome P450 by Carbon Monoxide: Relevance to Drug Resistance in Human Breast Cancer Therapy

Main Article Content

Brian Kawahara Pradip K. Mascharak


Drug resistance to conventional chemotherapeutics is a great impediment to cancer therapy. A major part of this problem arises from rapid metabolism of the drugs by cytochrome P450 class of enzymes before they reach their targets or at the target itself. Inhibition of such enzymatic deactivation of the drugs could offer partial rescue and make chemotherapy more effective. Site specific delivery of exogenous carbon monoxide has been shown to inhibit cytochrome P450 enzymes and resurrect sensitivity to chemotherapeutics already available in the market. Successful design for application of such CO delivery will thus be extremely desirable to patients particularly in poor countries where the antibody-based or nanodrug therapies, discovered recently, are too expensive for the general population. The potential of such carbon monoxide-induced cytochrome P450 inhibition to improve drug sensitization to conventional chemotherapeutics in breast cancer therapy has been discussed in this account.

Article Details

How to Cite
KAWAHARA, Brian; MASCHARAK, Pradip K.. Inhibition of Cytochrome P450 by Carbon Monoxide: Relevance to Drug Resistance in Human Breast Cancer Therapy. Medical Research Archives, [S.l.], v. 11, n. 4, apr. 2023. ISSN 2375-1924. Available at: <>. Date accessed: 20 apr. 2024. doi:
Research Articles


1. Vasan N, Bsselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575: 299-309.
2. Zahreddine H, Borden KL. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013;4:28. DOI: 10.3389/fphar.2013.00028.
3. Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006; 25:1679-1691.
4. Bruno RD, Njar VCO. Targeting cytochrome P450 enzymes: A new approach in anti-cancer drug development. Biorg Med Chem. 2007;15:5047-5060.
5. Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003;22(47):7369–7375.
6. Allain EP, Rouleau M, Levesque E, Guillemette C. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer. 2020; 122(9):1277–1287.
7. Ozben T. Mechanisms and strategies to overcome multidrug resistance in cancer treatment. FEBS lett. 2006;12:2903-2309.
8. Hofman J, Vagiannis D, Chen S, Guo L. Roles of CYP3A4, CYP3A5 and CYP2C8 drug-metabolizing enzymes in cellular cytostatic resistance. Chemico-Bio. Interactions. 2021;340:109448.
9. Wang R. Gasotransmitters: Growing pains and joy. Trends Biochem. Sci. 2014;39:227-232.
10. Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: From basic science to therapeutic applications. Phys Rev. 2006;86(2):583-650.
11. Ryter SW, Choi AMK. Cytoprotective and anti-inflammatory actions of carbon monoxide in organ injury and sepsis models. Novartis Foundation Symposium 280. Ch. 12 Chadwick DJ, Goode J, Eds; 2008. DOI:10.1002/9780470059593.ch12.
12. Mitchell LA, Channell MM, Royer CM, Ryter SW, Chou AMK, McDonald JD. Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inflammation. Am J Physiol Lung Cell Mol Physiol. 299: L891–L897, 2010.
13. Tripathi R, Yang X, Ryter SW, Wang B. Carbon monoxide as a therapeutic for airway diseases: Contrast and comparison of various CO delivery modalities. Curr Top Med Chem. 2021; 21(32): 2890–2908.
14. Bathoorn E, Slebos D-J, Postma DS, et al. Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J. 2007;30:1131-1137.
15. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–867.
16. Munn L. Cancer and inflammation. Wiley Interdiscip Rev Syst Biol Med. 2017;9(2):10.1002/wsbm.1370.
17. Wegiel B, Gallo D, Csizmadia E, et al. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res. 2013;73(23):7709-21.
18. Ahmed S, Hewett PW, Fujisawa T, et al. Carbon monoxide inhibits sprouting angiogenesis and vascular endothelial growth factor receptor-2 phosphorylation. Thromb Haemost 2015;113(2):329-37.
19. Vo TTT, Vo QC, Tuan VP, Wee Y, Cheng H-C, Lee I-T. The potentials of carbon monoxide-releasing molecules in cancer treatment: An outlook from ROS biology and medicine. Rodox Biol. 2021;46-102124. DOI: 10.1016/j.redox.2021.102124.
20. Kawahara B, Moller T, Hu-Moore K, Carrington S., Faull KF, Sen S, Mascharak PK. Attenuation of antioxidant capacity in human breast cancer cells by carbon monoxide through inhibition of cystathionine b-synthase activity: Implications in chemotherapeutic drug sensitivity. J Med Chem. 2017;60:8000-8010.
21. Kawahara B, Sen S, Mascharak PK. Reaction of carbon monoxide with cystathionine b-synthase: Implications on drug efficacies in cancer chemotherapy. Future Med Chem. 2020;12(4):325-337.
22. Goebel U, Wollborn J. Carbon monoxide in intensive care medicine – time to start the therapeutic application?! Intens Care Med Expt. 2020;8(1):2. DOI: 10.1186/s40635-020-0292-8.
23. Vitek L, Gbelcova H, Muchova L, Fujisawa T, Ahmed A, Rumi T. Antiproliferative effects of carbon monoxide on pancreatic cancer. Oncology. 2014;46:369-375.
24. Lv C, Su Q, Fang J, Yin H. Styrene-maleic acid copolymer-encapsulated carbon monoxide releasing molecule-2 (SMA/CORM-2) suppresses proliferation, migration and invasion of colorectal cancer cells in vitro and in vivo. Biochem Biophys Res Comm. 2019;520:320-326.
25. Yin H, Fang J, Liao L, Maeda H, Su Q. Upregulation of heme oxygenase-1 in colorectal cancer patients with increased circulation carbon monoxide levels, potentially affects chemotherapeutic sensitivity. BMC Cancer. 2014;14:436. DOI: 10.1186/1471-2407-14-436.
26. Lian S, Xia Y, Ung TT, et al. Carbon monoxide releasing molecule-2 ameliorates IL-1β-induced IL-8 in human gastric cancer cells. Toxicology. 2016;15:361-362:24-38.
27. Wu ML, Ho YC, Lin, CY, Yet SF. Heme oxygenase-1 in inflammation and cardiovascular disease. Am J Cardiovasc Dis. 2011;1:150–158.
28. Raval CM, Chintan, J, Lee P. Heme oxygenase-1 in lung disease. Curr Drug Targets. 2010;11:1532–1540.
29. Was H, Dulak J, Jozkowicz A. Heme oxygenase-1 in tumor biology and therapy. Curr Drug Targets. 2010;11:1551–1570.
30. Kinobe RT, Dercho RA, Nakatsu K. Inhibitors of the heme oxygenase—carbon monoxide system: on the doorstep of the clinic? Can. J. Physiol Pharmaco. 2008;86:577-599.
31. Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: novel therapeutic strategies in critical care medicine. Curr Drug Targets. 2010;11:1485–1494.
32. Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9:728–743.
33. Fujita T, Toda K, Karimova A, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med. 2001;7:598–604.
34. Tulis DA, Keswani AN, Peyton KJ, Wang H, Schafer AI, Durante W. Local administration of carbon monoxide inhibits neointima formation in balloon injured rat carotid arteries. Cell Mol Biol. 2005;51(5): 441–446.
35. Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ. Carbon monoxide-releasing molecules: Characterization of biochemical and vascular activities. Circ Res. 2002;90:E17–E24.
36. Clark JE, Naughton P, Shurey S, et al. Cardioprotective actions by a water-soluble carbon monoxide releasing molecule. Circ Res. 2003;93:e2-e8.
37. Motterlini R, Sawle P, Hammad J, Bains S, Alberto R, Foresti R, Green CJ. CORM-A1: A new pharcologically active carbon monoxide releasing molecule. FASEB J. 2005;19:284-286.
38. Foresti R, Hammad J, Clark JE, et al. Vasoactive properties of CORM-3, A novel water-soluble carbon monoxide-releasing molecule, Br J Pharmacol. 2004;142:453-460.
39. Pierri AE, Pallaoro A, Wu G, Ford PC. A luminescent and biocompatible photoCORM. J Am Chem Soc. 2012;134(44):18197–18200.
40. Kottelat E, Fabio Z. Visible light-activated photoCORMs. Inorganics. 2017;5:24; DOI: 10.3390/inoirganics5020024.
41. Wright MA, Wright JA. PhotoCORMs: CO release moves into the visible. Dalton Trans. 2016;45:6801-6811.
42. Chakraborty I, Carrington SJ, Mascharak PK. Design strategies to improve the sensitivity of photoactive metal carbonyl complexes (photoCORMs) to visible light and their potential as CO-donors to biological targets. Acc Chem. Res. 2014;47:2603–2611.
43. Crespy D, Landfester K, Schubert US, Schiller A. Potential photoactivated metallopharmaceuticals: From active molecules to supported drugs. Chem Commun. 2010;46:6651–6662.
44. Chakraborty I, Mascharak PK. Photoactive manganese carbonyl complexes with fac-{Mn(CO)3} moiety: Design, application, and potential as prodrugs in CO
therapy. Adv. Inorg. Chem. Vol. 80; Ford PC, Eldik, RV. Eds;Ch. 6:205-229.
45. Arnold JN, Anstee JE. CO and cancer. In Carbon monoxide in drug discovery: Basics, pharmacology, and therapeutic potential, Wang B, Otterbein LE. Eds.;2022:Ch 23.
46. Zhou Y, Yu W, Cao J, Gao H. Harnessing carbon monoxide-releasing platforms for cancer therapy. Biomaterials. 2020;255:120193.
47. Kourti M, Jiang WG, Cai J. Aspects of carbon monoxide in form of CO-releasing molecules used in cancer treatment: More light on the way. Oxidative Medicine and Cellular Longevity. 2017;9326454. DOI:10.1155/2017/9326454.
48. Zheng H-C. The molecular mechanisms of chemoresistance in cancers. Oncotarget. 2017;8(35): 59950–59964.
49. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A review. Adv Pharm Bull. 2017;3:339–348.
50. Zahreddine H, Borden KLB. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013;4:Article 28. DOI: 10.3389/fphar.2013.00028.
51. Cao J, Zhang M, Wang B, Zhang L, Zhou F. Fang M. Chemoresistance and metastasis in breast cancer molecular mechanisms and novel clinical studies. Front Oncol. 2021;11. DOI: 10.3389/fonc.2021.658552.
52. Begicevic R-R, Falasca M. ABC transporters in cancer stem cells: Beyond chemoresistance. Int J Mol Sci. 2017;18:2362. DOI: 10:3390/ijms18112362.
53. Hientz K, Mohr A, Bhakta-Guha D, Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget. 2017;8:8921-8946.
54. Dudas J, Ladanyi A, Ingruber J, Bernadette-Steinbichler T, Riechelmann H. Epithelial to mesenchymal transition: A mechanism that fuels cancer radio/chemoresistance. Cells. 2020;9(2): 428. DOI: 10.3390/cells9020428.
55. Sung H, Ferlay J, Siegel RL, Laversanne M,; Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71:209–249.
56. Chaffer CI, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;6024: 1559-1564.
57. Pluchino KM, Hall MD, Goldsborough AS, Callaghan R, Gottesman MM. Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resis Updat. 2012; 15(1-2):96-105.
58. Eckstein N. Platinum resistance in beast and ovarian cancer cell lines. J Exp Clin Cancer Res. 2011;30(1);91. DOI: 10.1186/1756-9966-30-91.
59. Stipp MC, Acco A. Involvement of cytochrome P450 enzymes in inflammation and cancer: a review. Cancer Chemothera Pharmacol. 2021;87:295-309.
60. Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006;25(11):1679-1691.
61. Christmas, P. Role of cytochrome P450 in inflammation. Ad. Pharmacol. 2015:74:163-192.
62. Desantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Center J Clin. 2019;69:438-451.
63. Luo B, Yan D, Yan H, Yuan J. Cytochrome P450: Implication in human breast cancer. Oncology Lett. 2021:548. DOI: 10.3892/ol.2021.12809.
64. Sneha S, Baker SC, Green A, Storr S, Alyappa R, Martin S, Pors, K. Intratumoural Cytochrome P450 expression in breast cancer: Impact on standard of care treatment and new efforts to develop tumour-selective therapies. Biomedicines. 2021;9:290. DOI: 10.3390/biomedicines9030290.
65. Floriano-Sanchez E, Rodriguez NC, Bandala C, Coballase-Urrutia E, Lopez-Cruz J. CYP3A4 expression in breast cancer and its association with risk factors in Mexican women. Asian Pac J Cancer Prev. 2014;15(8):3805-3809.
66. Haas S, Pierl C, Harth V, et al. Expression of xenobiotic and steroid hormone metabolizing enzymes in human breast carcinomas. Int J Cancer. 2006;119:1785–1791.
67. Murray GI, Patimalla S, Stewart KN, Miller ID, Heys SD. Profiling the expression of cytochrome P450 in breast cancer. Histopathology. 2010;57:202–211.
68. Rieger MA, Ebner R, Bell DR, et al. Identification of a novel mammary-restricted cytochrome P450, CYP4Z1, with overexpression in breast carcinoma. Cancer Res. 2024;64:2357–2364.
69. Yu W, Chai H, Li Y, et al: Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer. Toxicol Appl Pharmacol. 2012;264:73–83.
70. Klyushova LS, Perepechaeva ML, Grishanova AY. The role of CYP3A in health and disease. Biomedicine. 2022;10(11):2686. DOI: 10.3390/biomedicine10112686.
71. Vinothini G, Nagini S. Correlation of xenobiotic-metabolizing enzymes, oxidative stress and NFkB signaling with histological grade and menopausal status in patients with adenocarcinoma of the breast. Clin Chim Acta. 2010;411:368-374.
72. Martinez VG, O’Connor R, Liang Y, Clynes M. CYP1B1 expression is induced by docetaxel: Effect on cell viability and drug resistance. Br J Cancer. 2008;98:564-570.
73. Miyoshi Y, Ando A, Takamura Y, Taguchi T, Tamaki T, Noguchi S. Prediction of response to decetaxel by CYP3A4 mRNA expression in breast cancer tissue. Int J Cancer. 2002;97(1):129-132.
74. Huang C-C, Ho C-H, Chen Y-C, et al. Impact of carbon monoxide poisoning on the risk of breast cancer. Nature Sci Reports. 2020;10:20450. DOI: 10.1038/s41598-020-77371-w.
75. Carrington SJ, Chakraborty I, Mascharak PK. Rapid CO Release from a Mn(I) carbonyl complex derived from azopyridine upon exposure to visible light and its phototoxicity toward malignant cells. Chem Commun. 2013;49:11254−11256.
76. Chakraborty I, Jimenez J, Sameera WMC, Kato M, Mascharak PK. Luminescent Re(I) carbonyl complexes as trackable photoCORMs for CO delivery to cellular targets. Inorg Chem. 2017;56:2863-2873.
77. Jimenez J, Chakraborty I, Dominguez A, Martinez-Gonzalez J, Sameera WMC, Mascharak PK. Inorg Chem. 2018;57:1766-1773.
78. Chakraborty I, Carrington SJ, Hauser J, Oliver SRJ, Mascharak PK. Rapid eradication of human breast cancer cells through trackable light-triggered CO delivery by mesoporous silica nanoparticles packed with a designed photoCORM. Chem Mater. 2015;27:8387–8397.
79. Gonzales MA, Han H, Moyes A, Radinos A, Hobbs AJ, Coombs N, Oliver SRJ, Mascharak PK. Light-triggered carbon monoxide delivery with Al-MCM-41 based nanoparticles bearing a designed manganese carbonyl complex. J Mater Chem. B 2014;2:2107−2113.
80. Carrington SJ, Chakraborty I, Bernard JML, Mascharak PK. Synthesis and characterization of a “Turn-On” photoCORM for trackable CO delivery to biological targets. ACS Med Chem Lett. 2014;5(12):1324-1328.
81. Kourti M, Cai J, Jiang W, Westwell AD. Structural modifications on CORM-3 lead to enhanced anti-angiogenic properties against triple-negative breast cancer cells. Med Chem. 2021;17:40–59.
82. Kourti M, Westwell A, Jiang W, Cai J. Repurposing old carbon monoxide-releasing molecules towards the anti-angiogenic therapy of triple-negative breast cancer. Onco-target. 2019;10:1132-1148.
83. Kim D-H, Yoon H-J, Cha Y-N, Suth Y-J. Role of heme oxygenase-1 and its reaction product, carbon monoxide, in manifestation of breast cancer stem cell-like properties: Notch-1 as a putative target. Free Radic Res. 2018;52(11-12):1336-1347.
84. Cong Y, Sun B, Hu J, et al. A carbon monoxide releasing metal organic framework nanoplatform for synergistic treatment of triple-negative breast tumors. J Nanobiotechnol. 2022;20(1):494. DOI: 10.1186/s12951-022-01704-2.
85. Mosharov E, Cranford MR, Banerjee R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry. 2000;39:13005-13011.
86. Sen S, Kawahara B, Mahata SK, et al. Cystathionine: A novel oncometabolite in human breast cancer. Arch Biochem BioPhys. 2016;604:95-102.
87. Kawahara B, Faull KF, Janzen C, Mascharak PK. Carbon monoxide inhibits cytochrome P450 enzymes CYP3A4/2C8 in human breast cancer cell increasing sensitivity to paclitaxel. J Med Chem. 2021;6: 8437-8446.
88. Moreno-Aspita A, Perez EA. Treatment options for breast cancer resistant to anthracycline and taxane. Mayo Clin Prac. 2009;84:533-545.
89. van Eijk M, Boosman RJ, Schinkel AH, Huitema ADR, Beijnen JH. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial and ovarian tumors: Relevance for resistance to taxane. Cancer Chemother Pharmacol. 2019;84:487-499.
90. Fernandez-Peralbo MA, Priego-Capote F, de-Castro MD, Casado-Adam A, Ariona-Sanchez, A, Munoz-Casares FC. LC-MS/MS quantitative analysis of paclitaxel and its major metabolites in serum, plasma and tissue from women with ovarian cancer after intraperitonial chemotherapy. J Pharm Biomed Anal. 2014;91:131-137.
91. Murray S, Briasoulis E, Linardou H, Bafaloukos D, Papadimitriou C. Taxane resistance in breast cancer: Mechanisms, predictive biomarkers and circumvention strategies. Cancer Treatment Rev. 2012;38:890-903.
92. Navone NM, Polo CF, Fridardi AL, Andrade NE, del C.Baille AM. Heme biosynthesis in human breast cancer-mimetic ‘in vitro” studies and some heme enzymic activity levels. Int J Biochem. 1990;22:1407-1411.
93. Fiorito V, Chiabrando D, Petrillo S, Bertino F, Tolosano E. The multifaceted role of heme in cancer. Front Oncology. 2020;9. DOI: 10.3389/fonc.2019.01540.
94. Manikandan P, Nagini, S. Cytochrome P450 structure, function and clinical significance: A review. Curr Drug Targets. 2018;19(1):38-54.
95. Yan H, Du J, Zhu S, Nie G, Zhang H, Gu Z, Zhao Y. Emerging delivery strategies of carbon monoxide for therapeutic applications: from CO gas to CO releasing nanomaterials. Small. 2019;15:1904382. DOI: 10.1002/small.201904382.
96. Kautz AC, Kunz PC, Janiak C. CO-releasing molecules (CORM) conjugate systems. Dalton Trans. 2016;45:18045.
97. Abyrathna N, Washington K, Bashur C, Liao Y. Nonmetallic carbon monoxide releasing molecules (CORMs). Org Biomol Chem. 2017;15:8692-8699.
98. Li Y, Dang J, Liang Q, Yin L. Thermal-responsive carbon monoxide (CO) delivery expedites metabolic exhaustion of cancer cells toward reversal of chemotherapy resistance. ACS Cent Sci. 2019;5,:044-1058.
99. Kawahara B, Gao L, Cohn W, Whitelegge JP, Sen S, Janzen C, Mascharak PK. Diminished viability of human ovarian cancer cells by antigen-specific delivery of carbon monoxide with a family of photoactivatable antibody-photoCORM conjugates. Chem Sci. 2020;11(2):467-473.
100. Pinto M, Chakraborty I, Sandoval C, Mascharak PK. Eradication of HT-29 colorectal adenocarcinoma cells by controlled photorelease of CO from a CO-releasing polymer (photoCORP-1) triggered by visible light through an optical fiber-based device. J Control Release. 2017;264(28):192-202.
101. Pinto ML, Mascharak PK. Light-assisted and remote delivery of carbon monoxide to malignant cells and tissues: Photochemotherapy in the spotlight. Photochem Rev. 2020;42:100341. DOI: 10.1016/j.photochemrev.2020.1000341.
102. Yang X, Lu W, Wang M, Tan C, Wang B. “CO in a pill”: Towards oral delivery of carbon monoxide for therapeutic applications. J Control Release. 2021;338:593-609.
103. Cui Q, Liang X-L, Wang J-Q, Zhang J-Y, Chen Z-S. Therapeutic implication of carbon monoxide in drug resistant cancers. Biochem Pharmacol. 2022;201:115061. DOI: 10.1016/j.bcp:2022.115061.