Cost-Effectiveness of Prostate Health Index from a Managed Care Payer Perspective
Main Article Content
Abstract
Objective: The prostate health index (phi) has been shown to improve diagnostic accuracy in prostate cancer (Pca) detection compared with total and free serum prostate-specific antigen (PSA). The study assessed the cost-effectiveness of early Pca detection with phi plus PSA, compared with the PSA test alone, from a managed care organization perspective.
Study Design: Cost-effectiveness analysis.
Methods: A Markov model estimated expected costs and utilities of Pca detection and consequent treatment using four strategies in men aged 50-75 years. The strategies differed with the PSA test thresholds (≥2 or ≥4 ng/mL) and methods (PSA alone vs. PSA plus phi) to determine need for a prostate biopsy. The transition probabilities were derived from the electronic medical records of males in Kaiser Permanente Southern California during 1998-2007. Health state utilities and prostate cancer-related treatment costs were obtained from the published literature.
Results: The most cost-effective strategy used the PSA plus phi at PSA 2-10 ng/mL to determine need for a prostate biopsy, which had the lowest cost and highest effectiveness [cost/effectiveness (C/E)=13,650/15.491, $1,099/QALY]. Next was PSA plus phi at PSA 4-10 ng/mL [C/E=14,095/12.364, $1,140/QALY), followed by PSA test at threshold ≥4 ng/mL [C/E=15,256/12.304, $1,240/QALY), or PSA ≥2 ng/mL [C/E=15,789/12.287, $1,285/QALY). PSA plus phi at PSA 2-10 ng/mL displayed a 74% to 86% probability of being cost-effective at a willingness-to-pay range of 0 to $150,000/QALY gained.
Conclusions: Using the strategy PSA plus phi at PSA 2-10 ng/mL for Pca detection dominated other strategies, and was an optimal strategy under a willingness-to-pay of $150,000/QALY gained.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Wolf AM, Wender RC, Etzioni RB, Thompson IM, D'Amico AV, Volk RJ, et al. American Cancer Society guidelines for the early detection of cancer: update 2010. Ca Cancer J Clin. 2010 Mar-Apr;60(2):70-98. doi: 10.3322/caac.20066.
3. Moyer VA; on behalf of the U.S. Preventive Services Task Force. Screening for Prostate Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann Intern Med. 2012 Jul 17;157(2):120-134. doi: 10.7326/0003-4819-157-2-201207170-00459.
4. Basch E, Oliver TK, Vickers A, Thompson I, Kantoff P, Parnes H. Screening for prostate cancer with prostate-specific antigen testing: american society of clinical oncology provisional clinical opinion. J Clin Oncol. 2012 Aug 20;30(24):3020-5. doi: 10.1200/JCO.2012.43.3441.
5. Carlsson S, Vickers AJ, Roobol M, Eastham J, Scardino P, Lilja H, et al. Prostate Cancer Screening: Facts, Statistics, and Interpretation in Response to the US Preventive Services Task Force Review. J Clin Oncol. 2012 Jul 20;30(21):2581-4. doi: 10.1200/JCO.2011.40.4327.
6. Catalona WJ. The United States Preventive Services Task Force Recommendation against Prostate-Specific Antigen Screening--Counterpoint. Cancer Epidemiol Biomarkers Prev. 2012 Mar;21(3):395-7. doi: 10.1158/1055-9965.EPI-12-0059.
7. Catalona WJ, D'Amico AV, Fitzgibbons WF, Kosoko-Lasaki O, Leslie SW, Lynch HT, et al. What the U.S. Preventive services task force missed in its prostate cancer screening recommendation. Ann Intern Med. 2012 Jul 17;157(2):137-8. doi: 10.7326/0003-4819-157-2-201207170-00463.
8. Catalona WJ, Partin AW, Sanda MG, Wei JT, Klee GG, Bangma CH, et al. A multicenter study of [-2]Pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol. 2011 May; 185 (5): 1650-5. doi: 10.1016/j.juro.2010.12.032.
9. Jansen FH, van Schaik RH, Kurstjens J, Horninger W, Klocker H, Bektic J, et al. Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. Eur Urol. 2010 Jun;57(6):921-7. doi: 10.1016/j.eururo.2010.02.003.
10. Le BV, Griffin CR, Loeb S, Carvalhal GF, Kan D, Baumann NA, et al. [-2]Proenzyme prostate specific antigen is more accurate than total and free prostate specific antigen in differentiating prostate cancer from benign disease in a prospective prostate cancer screening study. J Urol. 2010 Apr;183(4):1355-9. doi: 10.1016/j.juro.2009.12.056
11. Lazzeri M, Haese A, de la Taille A, Palou Redorta J, McNicholas T, Lughezzani G, et al. Serum isoform [-2]proPSA derivatives significantly improve prediction of prostate cancer at initial biopsy in a total PSA range of 2-10 ng/ml: a multicentric European study. Eur Urol. 2013 Jun;63(6):986-94. doi: 10.1016/j.eururo.2013.01.011.
12. Hugosson J, Aus G, Lilja H, Lodding P, Pihl CG, Pileblad E, et al. Prostate specific antigen based biennial screening is sufficient to detect almost all prostate cancers while still curable. J Urol. 2003 May; 169(5):1720-3.
13. van der Cruijsen-Koeter IW, van der Kwast TH, Schröder FH. Interval carcinomas in the European Randomized Study of Screening for Prostate Cancer (ERSPC)-Rotterdam. J Natl Cancer Inst. 2003 Oct 1;95(19):1462-6.
14. Hoedemaeker RF, van der Kwast TH, Boer R, de Koning HJ, Roobol M, Vis AN, et al. Pathologic features of prostate cancer found at population-based screening with a four-year interval. J Natl Cancer Inst. 2001 Aug 1;93(15):1153-8
15. Postma R, Roobol M., Schröder FH, van der Kwast TH. Potentially advanced malignancies detected by screening for prostate carcinoma after an interval of 4 years. Cancer. 2004 Mar 1;100(5):968-75
16. Hugosson J, Aus G, Lilja H, Lodding P, Pihl CG. Results of a randomized, population-based study of biennial screening using serum prostate-specific antigen measurement to detect prostate carcinoma. Cancer. 2004 Apr 1;100(7):1397-1405
17. Schröder FH, Bangma CH, Roobol MJ. Is it necessary to detect all prostate cancers in men with serum PSA levels <3.0 ng/ml? A comparison of biopsy results of PCPT and outcome-related information from ERSPC. Eur Urol. 2008 May;53(5):901-8. doi: 10.1016/j.eururo.2008.01.048.
18. Gold MR, Sigel JE, Russell LB, Weinstein MC, eds. Cost-effectiveness in Health and Medicine. New York, NY: Oxford University Press, 1996
19. Arias E. United States life tables, 2006. Natl Vital Stat Rep. 2010;58(21):1-40.
20. Hayes JH, Ollendorf DA, Pearson SD, Barry MJ, Kantoff PW, Stewart ST, et al. Active surveillance compared with initial treatment for men with low-risk prostate cancer: a decision analysis. JAMA. 2010 Dec 1;304(21):2373-80. doi: 10.1001/jama.2010.1720.
21. Beck JR, Pauker SG, Gottlieb JE, Klein K, Kassirer JP. A convenient approximation of life expectancy (the “DEALE”): II. Use in medical decision-making. Am J Med. 1982;73:889-997.
22. Stokes ME, Black L, Benedict A, Roehrborn CG, Albertsen P. Long-term medical-care costs related to prostate cancer: estimates from linked SEER-Medicare data. Prostate Cancer Prostatic Dis. 2010 Sep;13(3):278-84. doi: 10.1038/pcan.2010.5.
23. Andriole GL, Crawford ED, Grubb RL 3rd, Buys SS, Chia D, Church RT, et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 2009 Mar 26;360(13):1310-9. doi: 10.1056/NEJMoa0810696.
24. Basu A, Dale W, Elstein A, Meltzer D. A linear index for predicting joint health states utilities from single health-states utilities. Health Econ. 2009 Apr;18(4):403-19. doi: 10.1002/hec.1373.
25. Krahn MD, Bremner KE, Tomlinson G, Naglie G. Utility and health-related quality of life in prostate cancer patients 12 months after radical prostatectomy or radiation therapy. Prostate Cancer Prostatic Dis. 2009;12(4):361-8. doi: 10.1038/pcan.2009.32.
26. Krahn MD, Mahoney JE, Eckman MH, Trachtenberg J, Pauker SG, Detsky AS. Screening for prostate cancer. A decision analytic view. JAMA. 1994 Sep 14;272(10):773-80.
27. Stinnett AA, Mullahy J. Net health benefits: a new framework for the analysis of uncertainty in cost-effectiveness analysis. Med Decis Making. 1998 Apr-Jun;18(2 Suppl):S68-80.
28. Groot Koerkamp B, Weinstein MC, Stijnen T, Heijenbrok-Kal MH, Hunink MG. Uncertainty and patient heterogeneity in medical decision models. Med Decis Making. 2010 Mar-Apr;30(2):194-205. doi: 10.1177/0272989X09342277.
29. Briggs AH, Goeree R, Blackhouse G, O'Brien BJ. Probabilistic analysis of cost-effectiveness models: choosing between treatment strategies for gastroesophageal reflux disease. Med Decis Making. 2002 Jul-Aug;22(4):290-308.
30. Barton GR, Briggs AH, Fenwick EA. Optimal cost-effectiveness decisions: the role of the cost-effectiveness acceptability curve (CEAC), the cost-effectiveness acceptability frontier (CEAF), and the expected value of perfection information (EVPI). Value Health. 2008 Sep-Oct;11(5):886-97. doi: 10.1111/j.1524-4733.2008.00358.x.
31. Nichol MB, Wu J, An JJ, Huang J, Denham D, Frencher S, et al. Budget impact analysis of a new prostate cancer risk index for prostate cancer detection. Prostate Cancer Prostatic Dis. 2011 Sep;14(3):253-61. doi: 10.1038/pcan.2011.16.
32. Nichol MB, Wu J, Huang J, Denham D, Frencher SK, Jacobsen SJ. Cost-effectiveness of prostate health index for prostate cancer detection. BJU Int. 2012 Aug;110(3):353-62. doi: 10.1111/j.1464-410X.2011.10751.x.
33. Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS, et al. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J Natl Cancer Inst. 2006 Apr 19;98(8):529-34.
34. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level <= 4.0 ng per milliliter. N Engl J Med. 2004 May 27;350(22):2239-46.
35. Catalona WJ, Loeb S. Prostate cancer screening and determining the appropriate prostate-specific antigen cutoff values. J Natl Compr Canc Netw 2010;8: 265-70.