A Critical View on the Importance of Treating Spasticity and New Options to Improve Function in Patients with Cerebral Palsy GMFCS I-III

Main Article Content

Reinald Brunner Kirsten Götz-Neumann

Abstract

Spasticity in patients with cerebral palsy is still an unclear concept which bases on the lesion of the upper motor neuron. The consequence is a loss of reflex control. The diagnosis is made during the static clinical exam and is transported into function. Spasticity is seen as an important factor which causes functional handicap as well as functional and later structural deformities. Because spasticity is considered a deteriorating factor for function, treatment of spasticity is one of the main columns in the treatment of children with spastic cerebral palsy. However, the diagnosis of spasticity during function is not possible up to now. Recent publications even raise doubts on the efficacy of spasticity treatment. On the other hand, spasticity is seen as a factor to compensate for weakness. New studies highlight the possibility of conditioning reflexes leading to an increase or decrease of reflex expression, hence spasticity. These facts query the treatment of spasticity and pave the way to new treatment concepts where experiencing successful movements can condition control of reflexes positively, without treating spasticity. This paper looks at the recent literature on new aspects of spasticity and describes the possible therapeutic consequences. The main shift in the treatment concept is to help patients cope with their spasticity and discover movement strategies in a large spectrum of movements. We describe possible modifications of the current treatment concepts. Movements should be carried out as an automatic muscle activity to reach the goal of an action which lets the patients experience success and joy. Dynamic orthotics help to keep the body segments in a functional adequate alignment, for an optimal movement experience under gravity, while the therapist intends to activate necessary but inactive muscles including eccentric muscle contractions. The patients discover new abilities and learn to move in a more efficient way. New feed-forward movement strategies are built up which help for activities in general. The need of spasticity compensating for weakness is reduced. These principles should be transported into daily life and sports. Sportive activities involve these therapeutic aims and the patients challenge themselves when they endeavour to improve.

Keywords: Spasticity, CP, Functional treatment, New strategies for rehabilitation, Motor learning, Gait, Activity-based restorative aligned therapy

Article Details

How to Cite
BRUNNER, Reinald; GÖTZ-NEUMANN, Kirsten. A Critical View on the Importance of Treating Spasticity and New Options to Improve Function in Patients with Cerebral Palsy GMFCS I-III. Medical Research Archives, [S.l.], v. 11, n. 4, apr. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3812>. Date accessed: 13 sep. 2024. doi: https://doi.org/10.18103/mra.v11i4.3812.
Section
Research Articles

References

1. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S. Dev Med Child Neurol. Apr 1997;39(4):214-23.
2. Lance JW. Symposium synopsis. In: Young RR, Koella WP, eds. Spasticity: disordered motor control. Yearbook Medical Publishers; 1980:485-494.
3. Schifrin BS, Longo LD. William John Little and cerebral palsy. A reappraisal. Eur J Obstet Gynecol Reprod Biol. Jun 2000;90(2):139-44. doi:10.1016/s0301-2115(00)00261-x
4. Burke D, Wissel J, Donnan GA. Pathophysiology of spasticity in stroke. Neurology. Jan 15 2013;80(3 Suppl 2):S20-6. doi:10.1212/WNL.0b013e31827624a7
5. Sheean G. The pathophysiology of spasticity. Eur J Neurol. May 2002;9 Suppl 1:3-9; dicussion 53-61. doi:10.1046/j.1468-1331.2002.0090s1003.x
6. Trompetto C, Marinelli L, Mori L, et al. Pathophysiology of spasticity: implications for neurorehabilitation. Biomed Res Int. 2014;2014:354906. doi:10.1155/2014/354906
7. Ward AB. A literature review of the pathophysiology and onset of post-stroke spasticity. Eur J Neurol. Jan 2012;19(1):21-7. doi:10.1111/j.1468-1331.2011.03448.x
8. van den Noort JC, Bar-On L, Aertbelien E, et al. European consensus on the concepts and measurement of the pathophysiological neuromuscular responses to passive muscle stretch. Eur J Neurol. Jul 2017;24(7):981-e38. doi:10.1111/ene.13322
9. Kheder A, Nair KP. Spasticity: pathophysiology, evaluation and management. Pract Neurol. Oct 2012;12(5):289-98. doi:10.1136/practneurol-2011-000155
10. Bar-On L, Molenaers G, Aertbeliën E, et al. Spasticity and its contribution to hypertonia in cerebral palsy. Biomed Res Int. 2015;2015:317047. doi:10.1155/2015/317047
11. Nielsen JB, Petersen NT, Crone C, Sinkjaer T. Stretch reflex regulation in healthy subjects and patients with spasticity. Neuromodulation. Jan 2005;8(1):49-57. doi:10.1111/j.1094-7159.2005.05220.x
12. Nielsen JB, Crone C, Hultborn H. The spinal pathophysiology of spasticity--from a basic science point of view. Acta Physiol (Oxf). Feb 2007;189(2):171-80. doi:10.1111/j.1748-1716.2006.01652.x
13. Pandyan AD, Gregoric M, Barnes MP, et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disability and rehabilitation. Jan 7-21 2005;27(1-2):2-6. doi:10.1080/09638280400014576
14. Chen XY, Chen Y, Wang Y, et al. Reflex conditioning: a new strategy for improving motor function after spinal cord injury. Ann N Y Acad Sci. Jun 2010;1198 Suppl 1(Suppl 1):E12-21. doi:10.1111/j.1749-6632.2010.05565.x
15. Song S, Geyer H. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J Physiol. Aug 15 2015;593(16):3493-511. doi:10.1113/JP270228
16. Thompson AK, Wolpaw JR. H-reflex conditioning during locomotion in people with spinal cord injury. J Physiol. May 2021;599(9):2453-2469. doi:10.1113/JP278173
17. Hagglund G, Wagner P. Development of spasticity with age in a total population of children with cerebral palsy. Research Support, Non-U.S. Gov't. BMC musculoskeletal disorders. 2008;9:150. doi:10.1186/1471-2474-9-150
18. van der Krogt MM, Doorenbosch CA, Becher JG, Harlaar J. Dynamic spasticity of plantar flexor muscles in cerebral palsy gait. J Rehabil Med. Jul 2010;42(7):656-63. doi:10.2340/16501977-0579
19. MacWilliams BA, McMulkin ML, Duffy EA, et al. Long-term effects of spasticity treatment, including selective dorsal rhizotomy, for individuals with cerebral palsy. Dev Med Child Neurol. Nov 10 2021;doi:10.1111/dmcn.15075
20. Trivedi R, Agarwal S, Shah V, et al. Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy. Neuroradiology. Aug 2010;52(8):759-65. doi:10.1007/s00234-010-0703-8
21. Yoshida S, Hayakawa K, Yamamoto A, et al. Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy. Dev Med Child Neurol. Oct 2010;52(10):935-40. doi:10.1111/j.1469-8749.2010.03669.x
22. Dinomais M, Groeschel S, Staudt M, Krageloh-Mann I, Wilke M. Relationship between functional connectivity and sensory impairment: red flag or red herring? Hum Brain Mapp. Mar 2012;33(3):628-38. doi:10.1002/hbm.21227
23. Staudt M. (Re-)organization of the developing human brain following periventricular white matter lesions. Neurosci Biobehav Rev. 2007;31(8):1150-6. doi:10.1016/j.neubiorev.2007.05.005
24. Lorentzen J, Willerslev-Olsen M, Huche Larsen H, Farmer SF, Nielsen JB. Maturation of feedforward toe walking motor program is impaired in children with cerebral palsy. Brain. Mar 1 2019;142(3):526-541. doi:10.1093/brain/awz002
25. Duran-Carabali LE, Henao-Pacheco ML, Gonzalez-Clavijo AM, Duenas Z. Salivary alpha amylase and cortisol levels as stress biomarkers in children with cerebral palsy and their association with a physical therapy program. Res Dev Disabil. Jan 2021;108:103807. doi:10.1016/j.ridd.2020.103807
26. Zhao X, Chen M, Du S, Li H, Li X. Evaluation of stress and pain in young children with cerebral palsy during early developmental intervention programs: a descriptive study. American journal of physical medicine & rehabilitation. Mar 2015;94(3):169-75; quiz 176-9. doi:10.1097/PHM.0000000000000252
27. Romkes J, Brunner R. An electromyographic analysis of obligatory (hemiplegic cerebral palsy) and voluntary (normal) unilateral toe-walking. Gait & posture. Oct 2007;26(4):577-86.
28. Frigo C, Pavan EE, Brunner R. A dynamic model of quadriceps and hamstrings function. Research Support, Non-U.S. Gov't. Gait & posture. Jan 2010;31(1):100-3. doi:10.1016/j.gaitpost.2009.09.006
29. Brunner R, Romkes J. Abnormal EMG muscle activity during gait in patients without neurological disorders. Gait & posture. Apr 2008;27(3):399-407.
30. Schweizer K, Romkes J, Brunner R. The association between premature plantarflexor muscle activity, muscle strength, and equinus gait in patients with various pathologies. Res Dev Disabil. Jun 10 2013;34(9):2676-2683. doi:10.1016/j.ridd.2013.05.025
31. Li S, Francisco GE, Rymer WZ. A New Definition of Poststroke Spasticity and the Interference of Spasticity With Motor Recovery From Acute to Chronic Stages. Neurorehabil Neural Repair. Jul 2021;35(7):601-610. doi:10.1177/15459683211011214
32. Dressler D, Bhidayasiri R, Bohlega S, et al. Defining spasticity: a new approach considering current movement disorders terminology and botulinum toxin therapy. J Neurol. Apr 2018;265(4):856-862. doi:10.1007/s00415-018-8759-1
33. Freixa M, Simões AF, Rodrigues JB, Úria S, da Silva GN. Occam’s razor versus Hickam’s dictum: two very rare tumours in one single patient. Oxford Medical Case Reports. 2019;2019(5)doi:10.1093/omcr/omz029
34. van Gorp M, Roebroeck ME, Swan Tan S, et al. Activity Performance Curves of Individuals With Cerebral Palsy. Pediatrics. Nov 2018;142(5)doi:10.1542/peds.2017-3723
35. Day SM, Wu YW, Strauss DJ, Shavelle RM, Reynolds RJ. Change in ambulatory ability of adolescents and young adults with cerebral palsy. Dev Med Child Neurol. Sep 2007;49(9):647-53. doi:10.1111/j.1469-8749.2007.00647.x
36. Hanna SE, Rosenbaum PL, Bartlett DJ, et al. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol. Apr 2009;51(4):295-302. doi:10.1111/j.1469-8749.2008.03196.x
37. Benner JL, Hilberink SR, Veenis T, Stam HJ, van der Slot WM, Roebroeck ME. Long-Term Deterioration of Perceived Health and Functioning in Adults With Cerebral Palsy. Arch Phys Med Rehabil. Nov 2017;98(11):2196-2205.e1. doi:10.1016/j.apmr.2017.03.013
38. Jan Lieber, Petra Marsico, Labruyère R. Interventionen früh beginnen. physiopraxis Das Fachmagazin für Physiotherapie. 2021;09.2021doi:DOI: 10.1055/a-1582-6009
39. Alriksson-Schmidt A, Nordmark E, Czuba T, Westbom L. Stability of the Gross Motor Function Classification System in children and adolescents with cerebral palsy: a retrospective cohort registry study. Dev Med Child Neurol. Jun 2017;59(6):641-646. doi:10.1111/dmcn.13385
40. Götz-Neumann K. Von Spastizität zu Aktivität: Exzitation statt Inhibition. physioscience. 2014;10(03):115-125. doi:10.1055/s-0034-1384954
41. Mrachacz-Kersting N, Kersting UG, de Brito Silva P, et al. Acquisition of a simple motor skill: task-dependent adaptation and long-term changes in the human soleus stretch reflex. J Neurophysiol. Jul 1 2019;122(1):435-446. doi:10.1152/jn.00211.2019
42. Kaya Keles CS, Ates F. Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles. Toxins (Basel). Nov 8 2022;14(11)doi:10.3390/toxins14110772
43. Goode-Roberts M, Noonan K, Stout D, et al. Case Report: Capitalizing on Development and Activity-Dependent Plasticity, an Interaction With Pediatric-Onset Spinal Cord Injury. Front Pediatr. 2022;10:804622. doi:10.3389/fped.2022.804622
44. Roy RR, Harkema SJ, Edgerton VR. Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Archives of physical medicine and rehabilitation. Sep 2012;93(9):1487-97. doi:10.1016/j.apmr.2012.04.034
45. Götz-Neumann K., Gehen Verstehen Ganganalyse in der Physiotherapie, Georg Thieme Verlag, 4. Auflage 2016, page 124 Medialer Kollaps.
46. Burnfield JPaJM. SLACK Health Care Books and Journals releases 'Gait Analysis: Normal and Pathological Function' Second Edition. Orthopedics Today. 2010;30(3):70.
47. Thielen M, Waible D, Krautwurst BK, Wolf SI, Dreher T. Effects of artificially induced bilateral internal rotation gait on gait kinematics and kinetics. Gait & posture. 2022;95:204-209. doi:10.1016/j.gaitpost.2022.05.003
48. Götz-Neumann K. From Spasticity to Activity: Excitation instead of Inhibition
Accurate Observing Gait Analysis and O. G. I. G. Gait Therapy
in Infantile Cerebral Palsy. physioscience. 2014;10:115–125. doi:DOI http://dx.doi.org/
10.1055/s-0034-1384954
49. Michaelsen SM, Luta A, Roby-Brami A, Levin MF. Effect of trunk restraint on the recovery of reaching movements in hemiparetic patients. Stroke. Aug 2001;32(8):1875-83. doi:10.1161/01.str.32.8.1875
50. Ohrvall AM, Krumlinde-Sundholm L, Eliasson AC. The stability of the Manual Ability Classification System over time. Dev Med Child Neurol. Feb 2014;56(2):185-9. doi:10.1111/dmcn.12348
51. Silverio APM, Mancini MC, Antunes FIT, Figueiredo PRP, Bueno KMP, Brandao MB. 'Thinking about myself?' Experiences of parents of adolescents with cerebral palsy: A qualitative study to guide the implementation of a service for families. Child Care Health Dev. Jan 3 2023;doi:10.1111/cch.13094
52. Freeman M, Stewart D, Cunningham CE, Gorter JW. "If I had been given that information back then": An interpretive description exploring the information needs of adults with cerebral palsy looking back on their transition to adulthood. Child Care Health Dev. Sep 2018;44(5):689-696. doi:10.1111/cch.12579
53. Adolph KE, Cole WG, Komati M, et al. How Do You Learn to Walk? Thousands of Steps and Dozens of Falls per Day. Psychological science. 2012;23(11):1387-1394. doi:10.1177/0956797612446346
54. Clark JE, Whitall J, Phillips SJ. Human interlimb coordination: the first 6 months of independent walking. Dev Psychobiol. Jul 1988;21(5):445-56. doi:10.1002/dev.420210504
55. Han D, Adolph KE. The impact of errors in infant development: Falling like a baby. Dev Sci. Sep 2021;24(5):e13069. doi:10.1111/desc.13069