Pseudomonas Aeruginosa Colonising Patients with Cystic Fibrosis: Antibiotic Resistance and Growth Conditions Determined by in vivo and in vitro Gene Expression

Main Article Content

Marina Macedo-Viñas

Abstract

Background: Pseudomonas aeruginosa is the main pathogen responsible for lung destruction in cystic fibrosis, becoming difficult to eradicate in chronic infection.


Aims: To describe antibiotic resistance among strains of P.aeruginosa isolated from sputa of patients with cystic fibrosis. To investigate in vivo and in vitro expression of genes related to antibiotic resistance and anaerobic growth.


Methods: Sputa (in vivo) and strains (in vitro) from 26 patients were obtained during 17 months. Genotypes were compared by random polymorphic DNA amplification. Expression of nirS (anaerobic respiration) and mexY (MexXY efflux pump) were measured by quantitative real time polymerase chain reaction. Expression levels of nirS in aerobiosis and anaerobiosis were compared to estimate oxygenation status within lungs. Mutations in the regulator gene mexZ were investigated in sputa expressing mexY and were correlated with strains’ antibiotic resistance. 


Results: Nine patients and 56 sputa were finally analysed. Seven patients carried a single genotype. Gene mexY was detected in all the sputa; expression levels were higher in sputa with mexZ mutations. Multi-resistance was frequent. Resistance profiles not always correlated with mexY expression levels or mexZ mutations. Comparison of in vivo and in vitro nirS expression indicated mainly aerobic and microaerophilic environments within sputa.


Discussion: Mutations in e mexZ are frequent in strains of P.aeruginosa colonising patients with cystic fibrosis. Presence of these mutations correlates with increased expression of mexY in vivo and in vitro, but no with in vivo antibiotic resistance. Results of nirS expression suggest that the lungs represent heterogeneous environments regarding oxygenation status. This complexity explains that mechanisms of growth and antibiotic resistance within the lungs of these patients are still largely unknown.


Conclusions: After many years of research few studies, including the present, revealed different aspects of in vivo growth of P. aeruginosa. We determined a cut-off to discriminate between sputa containing mexZ wild type and mutated alleles and showed that comparison of in vivo and in vitro nirS expression allows to predict oxygenation status. So far, none of the studies can explain all the factors influencing the behaviour of P.aeruginosa colonising cystic fibrosis patients making it difficult to design new therapeutic strategies.

Article Details

How to Cite
MACEDO-VIÑAS, Marina. Pseudomonas Aeruginosa Colonising Patients with Cystic Fibrosis: Antibiotic Resistance and Growth Conditions Determined by in vivo and in vitro Gene Expression. Medical Research Archives, [S.l.], v. 11, n. 6, june 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3816>. Date accessed: 22 dec. 2024. doi: https://doi.org/10.18103/mra.v11i6.3816.
Section
Research Articles

References

1. De Boeck K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr. May 2020;109(5):893-899. doi:10.1111/apa.15155
2. Sagel SD, Gibson RL, Emerson J, et al. Impact of Pseudomonas and Staphylococcus infection on inflammation and clinical status in young children with cystic fibrosis. J Pediatr. Feb 2009;154(2):183-8. doi:10.1016/j.jpeds.2008.08.001
3. Almughem FA, Aldossary AM, Tawfik EA, et al. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics. Jul 2 2020;12(7)doi:10.3390/pharmaceutics12070616
4. Chernish RN, Aaron SD. Approach to resistant gram-negative bacterial pulmonary infections in patients with cystic fibrosis. Curr Opin Pulm Med. Nov 2003;9(6):509-15. doi:10.1097/00063198-200311000-00011
5. Razvi S, Quittell L, Sewall A, Quinton H, Marshall B, Saiman L. Respiratory microbiology of patients with cystic fibrosis in the United States, 1995 to 2005. Chest. Dec 2009;136(6):1554-1560. doi:10.1378/chest.09-0132.
6. Bhagirath AY, Li Y, Somayajula D, Dadashi M, Badr S, Duan K. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm Med. Dec 5 2016;16(1):174. doi:10.1186/s12890-016-0339-5
7. Camus L, Vandenesch F, Moreau K. From genotype to phenotype: adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb Genom. Mar 2021;7(3)doi:10.1099/mgen.0.000513
8. Sauer K, Rickard AH, Davies DG. Biofilms and biocomplexity. Microbe-American Society for Microbiology. 2007;2(7):347.
9. Lee K, Yoon SS. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness. J Microbiol Biotechnol. Jun 28 2017;27(6):1053-1064. doi:10.4014/jmb.1611.11056
10. Hassett DJ, Sutton MD, Schurr MJ, Herr AB, Caldwell CC, Matu JO. Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. Trends Microbiol. Mar 2009;17(3):130-8. doi:10.1016/j.tim.2008.12.003
11. Ciofu O, Tolker-Nielsen T. Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents-How P. aeruginosa Can Escape Antibiotics. Front Microbiol. 2019;10:913. doi:10.3389/fmicb.2019.00913
12. Winstanley C, O'Brien S, Brockhurst MA. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol. May 2016;24(5):327-337. doi:10.1016/j.tim.2016.01.008
13. Khan F, Lee JW, Javaid A, Park SK, Kim YM. Inhibition of biofilm and virulence properties of Pseudomonas aeruginosa by sub-inhibitory concentrations of aminoglycosides. Microb Pathog. Sep 2020;146:104249. doi:10.1016/j.micpath.2020.104249
14. Worlitzsch D, Tarran R, Ulrich M, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest. Feb 2002;109(3):317-25. doi:10.1172/JCI13870
15. Alvarez-Ortega C, Harwood CS. Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol. Jul 2007;65(1):153-65. doi:10.1111/j.1365-2958.2007.05772.x
16. Linnane SJ, Keatings VM, Costello CM, et al. Total sputum nitrate plus nitrite is raised during acute pulmonary infection in cystic fibrosis. Am J Respir Crit Care Med. Jul 1998;158(1):207-12. doi:10.1164/ajrccm.158.1.9707096
17. Palmer KL, Brown SA, Whiteley M. Membrane-bound nitrate reductase is required for anaerobic growth in cystic fibrosis sputum. J Bacteriol. Jun 2007;189(12):4449-55. doi:10.1128/JB.00162-07
18. Tunney MM, Field TR, Moriarty TF, et al. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med. May 1 2008;177(9):995-1001. doi:10.1164/rccm.200708-1151OC
19. Yoon SS, Hennigan RF, Hilliard GM, et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell. Oct 2002;3(4):593-603. doi:10.1016/s1534-5807(02)00295-2
20. MacDougall C, Schooley RT. Miscellaneous Antibacterials: Aminoglycosides, Polymyxins, Urinary Antiseptics, Bacteriophages. In: Brunton LL, Knollmann BC, eds. Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 14e. McGraw-Hill Education; 2023.
21. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. Mar 1 2002;34(5):634-40. doi:10.1086/338782
22. Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front Microbiol. 2012;3:408. doi:10.3389/fmicb.2012.00408
23. Thacharodi A, Lamont IL. Gene-Gene Interactions Reduce Aminoglycoside Susceptibility of Pseudomonas aeruginosa through Efflux Pump-Dependent and -Independent Mechanisms. Antibiotics (Basel). Jan 11 2023;12(1)doi:10.3390/antibiotics12010152
24. Mahenthiralingam E, Campbell ME, Foster J, Lam JS, Speert DP. Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J Clin Microbiol. May 1996;34(5):1129-35. doi:10.1128/jcm.34.5.1129-1135.1996
25. Vogne C, Aires JR, Bailly C, Hocquet D, Plesiat P. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrobial agents and chemotherapy. May 2004;48(5):1676-80. doi:10.1128/AAC.48.5.1676-1680.2004
26. Sobel ML, McKay GA, Poole K. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrobial agents and chemotherapy. Oct 2003;47(10):3202-7. doi:10.1128/AAC.47.10.3202-3207.2003
27. The European Committee on Antimicrobial Susceptibility Testing - EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. 2023. http://www.eucast.org
28. The European Committee on Antimicrobial Susceptibility Testing - EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0 ed2019.
29. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. Mar 2012;18(3):268-81. doi:10.1111/j.1469-0691.2011.03570.x
30. Kohler T, Guanella R, Carlet J, van Delden C. Quorum sensing-dependent virulence during Pseudomonas aeruginosa colonisation and pneumonia in mechanically ventilated patients. Thorax. Aug 2010;65(8):703-10. doi:10.1136/thx.2009.133082
31. Struelens MJ, Schwam V, Deplano A, Baran D. Genome macrorestriction analysis of diversity and variability of Pseudomonas aeruginosa strains infecting cystic fibrosis patients. J Clin Microbiol. Sep 1993;31(9):2320-6. doi:10.1128/jcm.31.9.2320-2326.1993
32. Ciofu O, Riis B, Pressler T, Poulsen HE, Hoiby N. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrobial agents and chemotherapy. Jun 2005;49(6):2276-82. doi:10.1128/AAC.49.6.2276-2282.2005
33. Smith EE, Buckley DG, Wu Z, et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A. May 30 2006;103(22):8487-92. doi:10.1073/pnas.0602138103
34. Mena A, Smith EE, Burns JL, et al. Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol. Dec 2008;190(24):7910-7. doi:10.1128/JB.01147-08
35. Fraud S, Poole K. Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. Mar 2011;55(3):1068-74. doi:10.1128/AAC.01495-10
36. Benkert B, Quack N, Schreiber K, Jaensch L, Jahn D, Schobert M. Nitrate-responsive NarX-NarL represses arginine-mediated induction of the Pseudomonas aeruginosa arginine fermentation arcDABC operon. Microbiology (Reading). Oct 2008;154(Pt 10):3053-3060. doi:10.1099/mic.0.2008/018929-0
37. Trunk K, Benkert B, Quack N, et al. Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. Environ Microbiol. Jun 2010;12(6):1719-33. doi:10.1111/j.1462-2920.2010.02252.x
38. Toyofuku M, Nomura N, Fujii T, et al. Quorum sensing regulates denitrification in Pseudomonas aeruginosa PAO1. J Bacteriol. Jul 2007;189(13):4969-72. doi:10.1128/JB.00289-07
39. Chen F, Xia Q, Ju LK. Competition between oxygen and nitrate respirations in continuous culture of Pseudomonas aeruginosa performing aerobic denitrification. Biotechnol Bioeng. Apr 20 2006;93(6):1069-78. doi:10.1002/bit.20812
40. Clinical and Laboratory Standards Institute. M100 ED33:2023 - Performance Standards for Antimicrobial Susceptibility Testing. 33rd ed2023.
41. Geller DE, Pitlick WH, Nardella PA, Tracewell WG, Ramsey BW. Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis. Chest. Jul 2002;122(1):219-26. doi:10.1378/chest.122.1.219
42. Cornforth DM, Dees JL, Ibberson CB, et al. Pseudomonas aeruginosa transcriptome during human infection. Proc Natl Acad Sci U S A. May 29 2018;115(22):E5125-E5134. doi:10.1073/pnas.1717525115
43. Gifford AH, Willger SD, Dolben EL, et al. Use of a Multiplex Transcript Method for Analysis of Pseudomonas aeruginosa Gene Expression Profiles in the Cystic Fibrosis Lung. Infect Immun. Oct 2016;84(10):2995-3006. doi:10.1128/IAI.00437-16
44. Rossi E, Falcone M, Molin S, Johansen HK. High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nat Commun. Aug 27 2018;9(1):3459. doi:10.1038/s41467-018-05944-5
45. Balloy V, Varet H, Dillies MA, et al. Normal and Cystic Fibrosis Human Bronchial Epithelial Cells Infected with Pseudomonas aeruginosa Exhibit Distinct Gene Activation Patterns. PloS one. 2015;10(10):e0140979. doi:10.1371/journal.pone.0140979
46. Harrington NE, Littler JL, Harrison F. Transcriptome Analysis of Pseudomonas aeruginosa Biofilm Infection in an Ex Vivo Pig Model of the Cystic Fibrosis Lung. Appl Environ Microbiol. Feb 8 2022;88(3):e0178921. doi:10.1128/AEM.01789-21