A Review of the Use of Decellularized, Porcine, Small-Intestinal, Submucosal, Extracellular-Matrix Patch Material in Congenital Heart Surgery

Main Article Content

Vikram Sood, MD Richard G. Ohye, MD

Abstract

Patch material is frequently used by pediatric cardiac surgeons during repair of congenital heart disease. The ideal patch material would be pliable, durable, promote native tissue ingrowth, and allow for somatic growth. Intraoperatively, other desirable characteristics would include the material be hemostatic (i.e. lack of bleeding at needle holes) and isotropic (i.e. stretching in all directions, allowing for complex 3-dimensional patches). Decellularized, porcine, small-intestinal, submucosal, extracellular matrix material has shown promise as a potentially ideal patch material. Proxicor (4-ply) and Tyke (2-ply) (Aziyo Biologics, Silver Spring, MD) are commercially available, extracellular matrix material products that are approved by the United States Food and Drug Administration for use in pediatric cardiac surgery. While initial studies were encouraging regarding the extracellular matrix material potential for native tissue ingrowth, subsequent studies have not reproduced the early findings. In most histological analyses, explanted extracellular matrix material has demonstrated chronic inflammatory cell migration and scarring. Despite the lack of transformation, extracellular matrix material does have the advantages of remaining pliable and resisting calcification, which are desirable in the reconstruction of congenital heart defects.

Article Details

How to Cite
SOOD, Vikram; OHYE, Richard G.. A Review of the Use of Decellularized, Porcine, Small-Intestinal, Submucosal, Extracellular-Matrix Patch Material in Congenital Heart Surgery. Medical Research Archives, [S.l.], v. 11, n. 5, may 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3836>. Date accessed: 06 jan. 2025. doi: https://doi.org/10.18103/mra.v11i5.3836.
Section
Review Articles

References

1. Badylak S, Obermiller J, Geddes L, Matheny R. Extracellular matrix for myocardial repair. Heart Surg Forum. 2003;6(2):E20-E26. doi:10.1532/hsf.917

2. Rosen M, Roselli EE, Faber C, Ratliff NB, Ponsky JL, Smedira NG. Small intestinal submucosa intracardiac patch: an experimental study. Surg Innov. 2005;12(3):227-231. doi:10.1177/155335060501200307

3. Fallon A, Goodchild T, Wang R, Matheny RG. Remodeling of extracellular matrix patch used for carotid artery repair. J Surg Res. 2012;175(1):e25-e34. doi:10.1016/j.jss.2011.11.001

4. Kochupura PV, Azeloglu EU, Kelly DJ, et al. Tissue-engineered myocardial patch derived from extracellular matrix provides regional mechanical function. Circulation. 2005;112(9 Suppl):I144-I149. doi:10.1161/CIRCULATIONAHA.104.524355

5. Padalino MA, Castellani C, Dedja A, et al. Extracellular matrix graft for vascular reconstructive surgery: evidence of autologous regeneration of the neoaorta in a murine model. Eur J Cardiothorac Surg. 2012;42(5):e128-e135. doi:10.1093/ejcts/ezs462

6. Robinson KA, Li J, Mathison M, et al. Extracellular matrix scaffold for cardiac repair. Circulation. 2005;112(9 Suppl):I135-I143. doi:10.1161/CIRCULATIONAHA.104.525436

7. Mosala Nezhad Z, Poncelet A, de Kerchove L, et al. CorMatrix valved conduit in a porcine model: long-term remodelling and biomechanical characterization. Interact Cardiovasc Thorac Surg. 2017;24(1):90-98. doi:10.1093/icvts/ivw314

8. Proxicor and Tyke [product brochure]. Silver Spring, MD: Aziyo Biologics Inc, 2015.

9. Quarti A, Nardone S, Colaneri M, Santoro G, Pozzi M. Preliminary experience in the use of an extracellular matrix to repair congenital heart diseases. Interact Cardiovasc Thorac Surg. 2011;13(6):569-572. doi:10.1510/icvts.2011.280016

10. Smith MJ, Paran TS, Quinn F, Corbally MT. The SIS extracellular matrix scaffold-preliminary results of use in congenital diaphragmatic hernia (CDH) repair. Pediatr Surg Int. 2004;20(11-12):859-862. doi:10.1007/s00383-004-1298-0

11. Wiedemann A, Otto M. Small intestinal submucosa for pubourethral sling suspension for the treatment of stress incontinence: first histopathological results in humans. J Urol. 2004;172(1):215-218. doi:10.1097/01.ju.0000132148.56211.af

12. Jacobsen RM, Mitchell ME, Woods RK, Loomba RS, Tweddell JS. Porcine Small Intestinal Submucosa May Be a Suitable Material for Norwood Arch Reconstruction. Ann Thorac Surg. 2018;106(6):1847-1852. doi:10.1016/j.athoracsur.2018.06.033

13. Murala JSK, Sassalos P, Owens ST, Ohye RG. Porcine small intestine submucosa cylinder valve for mitral and tricuspid valve replacement. J Thorac Cardiovasc Surg. 2017;154(3):e57-e59. doi:10.1016/j.jtcvs.2017.03.129

14. Scholl FG, Boucek MM, Chan KC, Valdes-Cruz L, Perryman R. Preliminary experience with cardiac reconstruction using decellularized porcine extracellular matrix scaffold: human applications in congenital heart disease. World J Pediatr Congenit Heart Surg. 2010;1(1):132-136. doi:10.1177/2150135110362092

15. Gerdisch MW, Shea RJ, Barron MD. Clinical experience with CorMatrix extracellular matrix in the surgical treatment of mitral valve disease. J Thorac Cardiovasc Surg. 2014;148(4):1370-1378. doi:10.1016/j.jtcvs.2013.10.055

16. Witt RG, Raff G, Van Gundy J, Rodgers-Ohlau M, Si MS. Short-term experience of porcine small intestinal submucosa patches in paediatric cardiovascular surgery. Eur J Cardiothorac Surg. 2013;44(1):72-76. doi:10.1093/ejcts/ezs638

17. Nelson JS, Heider A, Si MS, Ohye RG. Evaluation of Explanted CorMatrix Intracardiac Patches in Children With Congenital Heart Disease. Ann Thorac Surg. 2016;102(4):1329-1335. doi:10.1016/j.athoracsur.2016.03.086

18. Rosario-Quinones F, Magid MS, Yau J, Pawale A, Nguyen K. Tissue reaction to porcine intestinal Submucosa (CorMatrix) implants in pediatric cardiac patients: a single-center experience. Ann Thorac Surg. 2015;99(4):1373-1377. doi:10.1016/j.athoracsur.2014.11.064

19. Zaidi AH, Nathan M, Emani S, et al. Preliminary experience with porcine intestinal submucosa (CorMatrix) for valve reconstruction in congenital heart disease: histologic evaluation of explanted valves. J Thorac Cardiovasc Surg. 2014;148(5):2216-2225.e1. doi:10.1016/j.jtcvs.2014.02.081

20. Hu K, Siddiqi U, Lee B, et al. Pediatric aortic valve repair: Any development in the material for cusp extension valvuloplasty?. J Card Surg. 2021;36(11):4054-4060. doi:10.1111/jocs.15931

21. Woo JS, Fishbein MC, Reemtsen B. Histologic examination of decellularized porcine intestinal submucosa extracellular matrix (CorMatrix) in pediatric congenital heart surgery. Cardiovasc Pathol. 2016;25(1):12-17. doi:10.1016/j.carpath.2015.08.007

22. Hofmann M, Schmiady MO, Burkhardt BE, et al. Congenital aortic valve repair using CorMatrix®: A histologic evaluation. Xenotransplantation. 2017;24(6):10.1111/xen.12341. doi:10.1111/xen.12341

23. Ashfaq A, Iyengar A, Kwon OJ, et al. Efficacy of an Extracellular Matrix in Systemic Loading Conditions in Congenital Heart Surgery. Pediatr Cardiol. 2017;38(7):1337-1341. doi:10.1007/s00246-017-1666-x

24. Rosario-Quinones F, Magid MS, Yau J, Pawale A, Nguyen K. Tissue reaction to porcine intestinal Submucosa (CorMatrix) implants in pediatric cardiac patients: a single-center experience. Ann Thorac Surg. 2015;99(4):1373-1377. doi:10.1016/j.athoracsur.2014.11.064

25. Haney LC, Ahmed HF, Dani A, et al. More Than 400 Uses of an Intestinal Submucosal Extracellular Matrix Patch in a Congenital Heart Program. Ann Thorac Surg. 2022;114(4):1475-1483. doi:10.1016/j.athoracsur.2021.06.087

26. Hirsch-Romano JC, Bove EL, Si MS, Ohye RG. Modified hemi-Fontan procedure. Oper Tech Thorac Cardiovasc Surg 2013;18:117–23. Doi:10.1053/j.optechstcvs.2013.08.001

27. Bove EL, Ohye RG, Devaney EJ. Hypoplastic left heart syndrome: conventional surgical management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2004;7:3-10. doi:10.1053/j.pcsu.2004.02.003

28. Sood V, Heider A, Rabah R, Si MS, Ohye RG. Evaluation of Explanted CorMatrix Tyke Extracardiac Patches in Infants with Congenital Heart Disease. Ann Thorac Surg. 2021;112(5):1518-1522. doi:10.1016/j.athoracsur.2020.06.151

29. Si MS, Bove EL, Romano JC, Ohye RG. How I Teach the Norwood Procedure. Ann Thorac Surg. 2016;101(6):2045-2048. doi:10.1016/j.athoracsur.2016.04.031

30. Mosala Nezhad Z, Baldin P, Poncelet A, El Khoury G. Calcific Degeneration of CorMatrix 4 Years After Bicuspidization of Unicuspid Aortic Valve. Ann Thorac Surg. 2017;104(6):e431-e433. doi:10.1016/j.athoracsur.2017.07.040

31. Murala JSK, Sassalos P, Owens ST, Ohye RG. Porcine small intestine submucosa cylinder valve for mitral and tricuspid valve replacement. J Thorac Cardiovasc Surg. 2017;154(3):e57-e59. doi:10.1016/j.jtcvs.2017.03.129

32. Bibevski S, Ramaswamy S, Hutcheson J. Editorial: Extracellular Matrix for Cardiovascular Reconstruction. Front Cardiovasc Med. 2021;8:664803. Published 2021 Apr 8. doi:10.3389/fcvm.2021.664803