Scaffold KSR2 overexpression is associated with melanoma A375 cells resistance to Vemurafenib
Main Article Content
Abstract
A large number of tumors shows a deregulation of the pathway RAS-RAF-MEK-ERK. Most of cases of melanoma are caused by the mutation V600E of BRAF, that leads to the constitutive activation of this kinase and of the MAPK pathway. One of the most important BRAF V600E inhibitor used against melanoma is vemurafenib.
Extension study of melanoma patients with BRAF V600E tumors shows that vemurafenib treatment of these metastatic melanomas causes complete or partial tumor regression. However, the majority of patients eventually develops resistance or presents intrinsic resistance against this drug, and the tumor becomes more aggressive.
Several mechanisms of resistance to BRAF inhibitors have been described. In most of these mechanisms the resistance to BRAF inhibitors results from reactivation of MEK-ERK pathway. Scaffold KSR2 is an important modulator of ERK-MAPK signalling pathway. In this study, we investigated the role of KSR2 in vemurafenib-treated melanoma cells.
We found that treatment with the BRAF-selective inhibitor vemurafenib induced the expression of KSR2 in A375 human melanoma cells. Interestingly, the KSR2 overexpression increased the melanoma cells growth after treatment with vemurafenib. These results suggest that scaffold KSR2 could play an important role in the mechanism of resistance of melanoma against BRAF inhibitor vemurafenib.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
Ascierto, P. A., Grimaldi, A. M., Anderson, A. C., Bifulco, C., Cochran, A., Garbe, C., Eggermont, A. M., Faries, M., Ferrone, S., Gershenwald, J. E., Gajewski, T. F., Halaban, R., Hodi, F. S., Kefford, R., Kirkwood, J. M., Larkin, J., Leachman, S., Maio, M., Marais, R., Masucci, G., Melero, I., Palmieri, G., Puzanov, I., Ribas, A., Saenger, Y., Schilling, B., Seliger, B., Stroncek, D., Sullivan, R., Testori, A., Wang, E., Ciliberto, G., Mozzillo, N., Marincola, F. M., & Thurin, M. (2013). Future perspectives in melanoma research: Meeting report from the “Melanoma Bridge”. Journal of Translational Medicine. 11, 137. doi: 10.1186/s12967-014-0277-z.
Burack, W. R., & Shaw, A. S. (2000). Signal transduction: hanging on a scaffold. Curr Opin Cell Biol. 12(2), 211-6.
Channavajhala, P. L., Wu, L., Cuozzo, J. W., Hall, J. P., Liu, W., Lin, L. L., & Zhang, Y. (2003). Identification of a novel human kinase supporter of Ras (hKSR-2) that functions as a negative regulator of Cot (tpl2) signaling. Journal of Biological Chemistry. 278 (47), 47089-97.
Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., Dummer, R., Garbe, C., Testori, A., Maio, M., Hogg, D., Lorigan, P., Lebbe, C., Jouary, T., Schadendorf, D., Ribas, A., O'Day, S. J., Sosman, J. A., Kirkwood, J. M., Eggermont, A. M., Dreno, B., Nolop, K., Li, J., Nelson, B., Hou, J., Lee, R. J., Flaherty, K. T., McArthur, G. A.; BRIM-3 Study Group. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516. doi: 10.1056/NEJMoa1103782.
Chudnovsky, Y., Khavari, P. A., & Adams, A. E. (2005). Melanoma genetics and development of rational therapeutics. J Clin Invest. 115(4), 813-24.
Costanzo-Garvey, D. L., Pfluger, P. T., Dougherty, M. K., Stock, J. L., Boehm, M., Chaika, O., Fernandez, M. R., Fisher, K., Kortum, R. L., Hong, E. G., Jun, J. Y., Ko, H. J., Schreiner, A., Volle, D. J., Treece, T., Swift, A. L., Winer, M., Chen, D., Wu, M., Leon, L. R., Shaw, A. S., McNeish, J., Kim, J. K., Morrison, D. K., Tschöp, M. H., & Lewis, R. E. (2009). KSR2 Is an Essential Regulator of AMP Kinase, Energy Expenditure, and Insulin Sensitivity. Cell Metab. 10(5), 366-78. doi: 10.1016/j.cmet.2009.09.010.
Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. V. C., Leung, S. Y., Yuen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Marais, R., Marshall, C. J., Wooster, R., Stratton, M. R. & Futreal, A. P. (2002). Mutations of the BRAF gene in human cancer Oncogene. Nature. 10, 1038.
Dhanasekaran, D. N., Kashef, K., Lee, C. M., Xu, H., & Reddy Fels, E. P. (2007). Scaffold proteins of MAP-kinase modules. Oncogene. 26, 3185-3202.
Dougherty, M. K., Ritt, D. A., Zhou, M., Specht, S. I., Monson, D. M., Veenstra, T. D., & Morrison, D. K. (2009). KSR2 is a calcineurin substrate that promotes ERK cascade activation in response to calcium signals. Mol Cell. 34(6), 652-62. doi: 10.1016/j.molcel.2009.06.001.
Fernandez, M. R., Henry, M. D., & Lewis, R. E. (2012). Kinase Suppressor of Ras 2 (KSR2) Regulates Tumor Cell transformation via AMPK. Mol Cell Biol. 32(18), 3718-3731. doi: 10.1128/MCB.06754-11.
Flaherty, K. T., Infante, J. R., Daud, A., Gonzalez, R., Kefford, R. F., Sosman, J., Hamid, O., Schuchter, L., Cebon, J., Ibrahim, N., Kudchadkar, R., Burris, H. A. 3rd, Falchook, G., Algazi, A., Lewis, K., Long, G. V., Puzanov, I., Lebowitz, P., Singh, A., Little, S., Sun, P., Allred, A., Ouellet, D., Kim, K. B., Patel, K., & Weber, J. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703. doi: 10.1056/NEJMoa1210093.
Forsea, A. M., Del Marmol, V., de Vries, E., Bailey, E. E., & Geller, A.C. (2012). Melanoma incidence and mortality in Europe: new estimates, persistent disparities. Br. J. Dermatol. 167, 1124–1130. doi: 10.1111/j.1365-2133.2012.11125.x.
Girotti, M. R., Pedersen, M., Sanchez-Laorden, B., Viros, A., Turajlic, S., Niculescu-Duvaz, D., Zambon, A., Sinclair, J., Hayes, A., Gore, M., Lorigan, P., Springer, C., Larkin, J., Jorgensen, C., & Marais, R. (2013). Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer discovery. 3, 158–167. doi: 10.1158/2159-8290.CD-12-0386.
Girotti, M. R., Lopes, F., Preece, N., Niculescu-Duvaz, D., Zambon, A., Davies, L., Whittaker, S., Saturno, G., Viros, A., Pedersen, M., Suijkerbuijk, B. M., Menard, D., McLeary, R., Johnson, L., Fish, L., Ejiama, S., Sanchez-Laorden, B., Hohloch, J., Carragher, N., Macleod, K., Ashton, G., Marusiak, A. A., Fusi, A., Brognard, J., Frame, M., Lorigan, P., Marais, R., & Springer, C. (2015). Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer cell. 12,27(1), 85-96. doi: 10.1016/j.ccell.2014.11.006.
Giurisato, E., Gamberucci, A., Ulivieri, C., Marruganti, S., Rossi, E., Giacomello, E., Randazzo, D., & Sorrentino, V. (2014). The KSR2-calcineurin complex regulates STIM1-ORAI1 dynamics and store-operated calcium entry (SOCE). Mol Biol Cell. 25(11), 1769–1781. doi: 10.1091/mbc.E13-05-0292
Hatzivassiliou, G., Song, K., Yen, I., Brandhuber, B.J., Anderson, D.J., Alvarado, R., Ludlam, M.J., Stokoe, D., Gloor, S.L., Vigers, G., et al. (2010). RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435
Heidorn, S.J., Milagre, C., Whittaker, S., Nourry, A., Niculescu-Duvas, I., Dhomen, N., Hussain, J., Reis-Filho, J.S., Springer, C.J., Pritchard, C., and Marais, R. (2010). Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221
Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., Emery, C. M., Stransky, N., Cogdill, A. P., Barretina, J., Caponigro, G., Hieronymus, H., Murray, R. R., Salehi-Ashtiani, K., Hill, D. E., Vidal, M., Zhao, J. J., Yang, X., Alkan, O., Kim, S., Harris, J. L., Wilson, C. J., Myer, V. E., Finan, P. M., Root, D. E., Roberts, T. M., Golub, T., Flaherty, K. T., Dummer, R., Weber, B., Sellers, W. R., Schlegel, R., Wargo, J. A., Hahn, W. C., & Garraway, L. A. (2010). COT/MAP3K8 drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 468(7326), 968–972. doi: 10.1038/nature09627.
Kolch, W. (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 6(11), 827-37.
Kornfeld, K., Hom, D. B., & Horvitz, H. R. (1995). The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell. 83, 903-13.
Kortum, R. L., & Lewis, R. E. (2004). The molecular scaffold KSR1 regulates the proliferative and oncogenic potential of cells. Mol Cell Biol. 24, 4407-16.
Liu, K., Victora, G. D., Schwickert, T. A., Guermonprez, P., Meredith, M. M., Yao, K., Chu, F. F., Randolph, G.,J., Rudensky, A. Y., & Nussenzweig, M. (2009). In vivo
analysis of dendritic cell development and homeostasis. Science. 324(5925), 392-7. doi: 10.1126/science.1170540
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method. Methods. 25(4), 402-8..
Lozano, J., Xing, R., Cai, Z., Jensen, H. L., Trempus, C., Mark, W., Cannon, R., & Kolesnick, R. (2003). Deficiency of kinase suppressor of Ras1 prevents oncogenic ras signaling in mice. Cancer Res. 63(14), 4232-8.
Morrison, D. K., & Davis, R. J. (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol. 19, 91-118.
Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., Chen, Z., Mi- Lee, K., Attar, N., Sazegar, H., Chodon, T., Nelson, S. F., McArthur, G., Sosman, J. A., Ribas, A., & Lo, R. S. (2010). Melanomas acquired resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 468(7326), 973–977. doi: 10.1038/nature09626.
Poulikakos, P.I., Zhang, C., Bollag, G., Shokat, K.M., and Rosen, N. (2010). RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430.
Ohmachi, M., Rocheleau, C. E., Church, D., Lambie, E., Schedl, T., & Sundaram, M. V. (2002). C. elegans ksr-1 and ksr-2 have both unique and redundant functions and are required for MPK-1 ERK phosphorylation. Curr Biol. 5, 12(5), 427-33.
Ravnan, M. C., & Matalka, M. S. (2012). Vemurafenib in patients with BRAF V600E mutation-positive advanced melanoma. Clin Ther. 34(7), 1474-86. doi: 10.1016/j.clinthera.2012.06.009.
Revelli, J. P., Smith, D., Allen, J., Jeter-Jones, S., Shadoan, M. K., Desai, U., Schneider, M., van Sligtenhorst, I., Kirkpatrick, L., Platt, K. A., Suwanichkul, A., Savelieva, K., Gerhardt, B., Mitchell, J., Syrewicz, J., Zambrowicz, B., Hamman, B. D., Vogel, P., & Powell, D. R. (2011). Profound obesity secondary to hyperphagia in mice lacking kinase suppressor of ras 2. Obesity (Silver Spring). 19, 1010–1018. doi: 10.1038/oby.2010.282.
Shaw, A. S., & Filbert, E. L. (2009). Scaffold proteins and immune-cell signalling. Nat Rev Immunol. 9(1), 47-56. doi: 10.1038/nri2473.
Sosman, J. A., Kim, K. B., Schuchter, L., Gonzalez, R., Pavlick, A. C., Weber, J. S., McArthur, G. A., Hutson, T. E., Moschos, S. J., Flaherty, K. T., Hersey, P., Kefford, R., Lawrence, D., Puzanov, I., Lewis, K. D., Amaravadi, R. K., Chmielowski, B., Lawrence, H. J., Shyr, Y., Ye, F., Li, J., Nolop, K. B., Lee, R. J., Joe, A. K., & Ribas, A. (2012). Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714. doi:10.1056/NEJMoa1112302.
Sundaram, M., & Han, M. (1995). The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell. 83, 889-901.
Therrien, M., Chang, H. C., Solomon, N. M., Karim, F. D., Wassarman, D. A., & Rubin, G. M. (1995). KSR, a novel protein kinase required for RAS signal transduction. Cell. 83, 879-88.
Vermi, W., Giurisato, E., Lonardi, S., Balzarini, P., Rossi, E., Medicina, D., Bosisio, D., Sozzani, S., Pellegrini, W., Doglioni, C., Marchetti, A., Rossi, G., Pileri, S., & Facchetti, F. (2013). Ligand-dependent activation of EGFR in follicular dendritic cells sarcoma is sustained by local production of cognate ligands. Clin Cancer Res. 19(18), 5027-38. doi: 10.1158/1078-0432.CCR-13-1275.
Villanueva, J., Vultur, A., Lee J. T., Somasundaram, R., Fukunaga-Kalabis, M., Cipolla, A. K., Wubbenhorst, B., Xu, X., Gimotty, P. A., Kee, D., Santiago-Walker, A. E., Letrero, R., D'Andrea, K., Pushparajan, A., Hayden, J. E., Brown, K. D., Laquerre, S., McArthur, G. A., Sosman, J. A., Nathanson, K. L., & Herlyn, M. (2010). Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 18(6), 683–695. doi: 10.1016/j.ccr.2010.11.023.
Vultur, A., Villanueva, J., & Herlyn, M. (2012). Targeting BRAF in advanced melanoma: a first step towards manageable disease. Clin Cancer Res. 17(7), 1658-1663. doi: 10.1158/1078-0432.CCR-10-0174.
Wagle, N., Emery, C., Berger, M. F., Davis, M. J., Sawyer, A., Pochanard, P., Kehoe, S. M., Johannessen, C. M., Macconaill, L. E., Hahn, W. C., Meyerson, M., & Garraway, L. A. (2011). Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 29(22), 3085-96. doi: 10.1200/JCO.2010.33.2312.
Wilson, T. R., Fridlyand, J., Yan, Y., Penuel, E., Burton, L., Chan, E., Peng, J., Lin, E., Wang, Y., Sosman, J., Ribas, A., Li, J., Moffat, J., Sutherlin, D. P., Koeppen, H., Merchant, M., Neve, R., & Settleman, J. (2012). Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 487, 505–509. doi: 10.1038/nature11249.
Xing, H. R., Cordon-Cardo, C., Deng, X., Tong, W., Campodonico, L., Fuks, Z., & Kolesnick, R. (2003). Pharmacologic inactivation of kinase suppressor of ras-1 abrogates Ras-mediated pancreatic cancer. Nat Med. 9(10), 1266-8.