Prof Cerebrospinal CNS-Leaks: State of the Art in Imaging Diagnosis with Special Focus on Intrathecal MRI Paramagnetic Contrast Agents Procedures CEREBROSPINAL CNS-LEAKS

Main Article Content

Alberto Muñoz Antonio Oliviero

Abstract

MR imaging has proved invaluable in anatomic depiction of the cerebrospinal fluid (CSF) spaces and the surrounding neural and non-neural tissue, although there are still some clinical situations (i.e., cases of CSF-flow alterations, communicating or non-communicating cyst masses bordering CSF pathways, or craniospinal CSF leaks) in which further imaging tests may be required for a definitive diagnosis.


This paper will review the state-of-the-art imaging in these processes, including Radionuclide Cisternography, plain Computed Tomography (CT) and enhanced-CT Cisternography/ myelography, as well as Magnetic Resonance Imaging (MRI) and contrast-enhanced Cisternography/myelography, emphasizing the latest CT and MR imaging refinement advances and proposing tailored specific approaches for two well-established clinical syndromes, namely CSF rhinorrhea and intracranial hypotension syndrome.

Keywords: CSF leak imaging, CSF rhinorrhea imaging, Spontaneous rhinorrhea and otorrhea, CSF otorrhea imaging, Radioisotope cisternography, Intrathecal Gd enhancement, MR cisternography, Intracranial hypotension imaging

Article Details

How to Cite
MUÑOZ, Alberto; OLIVIERO, Antonio. Prof Cerebrospinal CNS-Leaks: State of the Art in Imaging Diagnosis with Special Focus on Intrathecal MRI Paramagnetic Contrast Agents Procedures. Medical Research Archives, [S.l.], v. 11, n. 6, june 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3844>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v11i6.3844.
Section
Research Articles

References

1. Chiapparini L, Farina L, D’Incerti L, Erbetta A, et al. Spinal radiological findings in nine patients with spontaneous intracranial hypotension. Neuroradiology. 2002;44:143-52.
2. Ferrante E, Savino A, Sances G, & Nappi G. Spontaneous intracranial hypotension syndrome: report of twelve cases. Headache. 2004; 44:615-622.
3. Moriyama E, Ogawa T, Nishida A, Ishikawa , & Beck H. Quantitative analysis of radioisotope cisternography in the diagnosis of intracranial hypotension. J Neurosurg. 2004;101:421-426.
4. Spelle L, Boulin A, Tainturier C, Visot A, Graveleau P, & Pierot L. Neuroimaging features of spontaneous intracranial hypotension. Neuroradiology. 2001;43:622-627.
5. FE: Watanabe Y, Makidono A, Nakamura M, & Saida Y. 3D MR cisternography to identify distal dural rings: comparison of 3D-CISS and 3D SPACE sequences. Magn Reson Med Sci. 2011;10:29-32.
6. Albayram, F. Kilic, H. Ozer, S. Baghaki, N. Kocer, C. Islak Gadolinium-enhanced MR cisternography to evaluate dural leaks in intracranial hypotension syndrome
Am J Neuroradiol. 2008;29:116-121.
7. Yoo HM, Kim SJ, Choi CG, Lee D,et al. Detection of CSF leak in spinal CSF leak syndrome using MR myelography: correlation with radioisotope cisternography. Am J Neuroradiol. 2008;29:649-654
8. Speck U. Magnetic resonance ventriculography with gadolinium DTPA: report of two cases. Neuroradiology. 1997 39:418-422.
9. Algin O, Hakyemez B, Gokalp G, Ozcan T, et al. The contribution of 3D-CISS and contrast-enhancedMR cisternographyin detecting cerebrospinal fluid leak in patients with rhinorrhoea. Br J Radiol. 2010;83:225-32.
10. Selcuk H, Albayram S, Ozer H, Ulus S, et al. Intrathecal gadolinium-enhanced MR cisternography in the evaluation of CSF leakage. Am J Neuroradiol. 2010;31:71-75.
11. Tay ASS, Maya M, Moser FG, Nuño M, Schievink WI. Computed tomography vs heavily T2-weighted magnetic resonance myelography for the initial evaluation of patients with spontaneous intracranial hypotension. JAMA Neurol. 2021;78:1275-1276.
12. Wang YF., Lirng JF, Fuh, JL, Hseu SS, & Wang SJ. Wang Heavily T2-weighted MR myelography vs CT myelography in spontaneous intracranial hypotension. Neurology. 2009;73:1892-1898.
13. Kim BR, Lee JW, Lee E, Kang Y. Utility of heavily T2-weighted MR myelography as the first step in CSF leak detection and the planning of epidural blood patches. J Clin Neurosc. 2020;77:110-115.
14. Tsai PH, Fuh JL, J.F. JF, Wang SJ. Heavily T2-weighted MR myelography in patients with spontaneous intracranial hypotension: a case-control study. Cephalalgia. 2007;27:929-934.
15. Algin O, Hakyemez B, Parlak M. Phase-contrast MRI and 3D-CISS versus contrast-enhanced MR cisternography on the evaluation of the aqueductal stenosis. Neuroradiology. 2010;52:99-108.
16. Algin O, Hakyemez B, Parlak M. Phase-contrast MRI and 3D-CISS versus contrast-enhanced MR cisternography for the detection of spontaneous third ventriculostomy. J Neuroradiol. 2011;38:98-104.
17. Brash RC. Methods of contrast enhancement for NMR imaging and potentials applications. Radiology. 1983;147:781-788.
18.Hinshaw DB, Wong VC. Paramagnetic contrast agents in the evaluation of brain neoplasms. Top Magn Reson Imag. 1989;1:79- 93.
19. Sanjay S. Advances in contrast-enhanced MR: Principles. Am J Roentgenol. 1991;156:236-239.
20. Muñoz A. Magnetismo y susceptibilidad magnética. Diamagnetismo y paramagnetismo. Ferromagnetismo y superparamagnetismo. El efecto paramagnético de la melanina. Mecanismos de acción de los agentes de contraste en RM. Radiología. 1992;34:379-384.
21. Muñoz A & Castillo M. Indications for adult and pediatric magnetic resonance imaging gadolinium-enhanced cisternography and myelography: Experience and review of the literature. Current Med Imag Review. 2008;4:170-180.
22. Zeng QY, Xiong L, Jinkins JR, Fan Z, Liu Z. Intrathecal gadolinium-enhanced MR myelography and cisternography: a pilot study in human patients. Am J Roentgenol. 1999;173:1109-1115.
23. Jinkins JR, Rudwan M, Krumina G, Turgut TE. Intrathecal gadolinium- enhanced MR cisternography in the evaluation of clinically suspected cerebrospinal fluid rhinorrhea in humans: early experience. Radiology. 2002; 222:555–559.
24. Aydin K, Guven, Sencer S, Jinkins JR, et al. MRI cisternography with gadolinium-containing contrast medium: its role, advantages and limitations in the investigation of rhinorrhea. Neuroradiology. 2004;46:75-80.
25. Aydin K, Terzibasioglu E, Sencer S, SencerA, et al. Localization of cerebrospinal fluid leaks by gadolinium-enhanced magnetic resonance cisternography: a 5-year single-center experience. Neurosurgery. 2008;62:584-891.
26. Di Chiro G, Knop RH, Girton ME, Dwyer AJ, et al. MR cisternography and myelography with Gd-DTPA in monkeys. Radiology. 1985;157: 373–77.
27. Jinkins JR, Rudwan M, Krumina G, Turgut TE. Intrathecal gadolinium-enhanced MR cisternography in the evaluation of clinically suspected cerebrospinal fluid rhinorrhea in humans: early experience. Radiology 2002;222:555–559.
28. Tali ET, Ercan N, Krumina G, Rudwan M, et al. Intrathecal gadolinium (gadopentetate dimeglumine) enhanced magnetic resonance myelography and cisternography. Results of a multicenter study. Invest Radiol. 2002;37:152-159.
29. Naul LG and Finkenstaedt M. Extensive cerebrospinal fluid enhancement with gadopentetate dimeglumine in a primitive neuroectodermal tumor. Am J Neurorad 1997;18:1709–1711
30. Nacar Dogan S, Kizilkilic O, Kocak B, Isler C, et al. (2018). Intrathecal gadolinium-enhanced MR cisternography in patients with otorhinorrhea: 10-year experience of a tertiary referral center. Neuroradiology. 2018;60:471-477.
31. Muñoz A, Hinojosa J, Esparza J. Cisternography and Ventriculography Gadopentate Dimeglumine–Enhanced MR Imaging in Pediatric Patients: Preliminary Report. Am J Neuroradiol. 2007; 28:889-894
32. Lloyd KM, DelGaudio JM, & Hudgins PA. Imaging of skull base cerebrospinal fluid leaks in adults. Radiology. 2008;248:725-736.
33. Zeng QY, Xiong L, Jinkins JR, Liu Z, Fan Z. Intrathecal gadolinium-enhanced MR myelography: a pilot study in human patients (abstr). Radiology. 1997;205(P):486.
34. Cebeci H, Bilgin C, Candan S, Demir AB, & Hakyemez, B. Spinal cerebrospinal fluid leakage in spontaneous intracranial hypotension: an intrathecal gadolinium enhanced MR-Myelography study. J. Belg Soc Radiol. 2020:104(1)
35. Xie M, Zhou K, Kachra S, McHugh T. et al. Diagnosis and localization of cerebrospinal fluid rhinorrhea: a systematic review. Am J Rhinol Allerg. 2022;36:397-406.
36. Yildiz H, Erdogan C, Yalcin R, Yazici Z, et al. Evaluation of communication between intracranial arachnoid cysts and cisterns with phase-contrast cine MR imaging. Am J Neuroradiol. 2005;26:145-151.
37. Ray DE, Cavanagh JB, Nolan CC, & Williams S. Neurotoxic effects of gadopentetate dimeglumine: behavioral disturbance and morphology after intracerebroventricular injection in rats. Am J Neuroradiol. 1996;17:365-373.
38. Ray DE, Holton JE, Nolan CC, Cavanagh JB,et al. Neurotoxic potential of gadodiamide after injection into the lateral cerebral ventricle of rats. Am J Neuroradiol. 1998;19:1455-1462.
39.EL. Jinkins JR, Williams RF, Xiong L. Evaluation of gadopentetate dimeglumine magnetic resonance cisternography in an animal model: preliminary report. Invest Radiol. 1999;34:156-159.
40. Algin O, Turkbey B. Intrathecal gadolinium-enhanced MR cisternography: a comprehensive review. Am J Neuroradiol. 2013;34:14-22.
41. Morris TW, Ekholm SE, Prentice LJ. The effects of gadolinium- DTPA and DOTA on neural tissue metabolism. Invest Radiol. 1991; 26:1087-1090.
42. Provenzano DA, Pellis Z, DeRiggi L. Fatal gadolinium-induced encephalopathy following accidental intrathecal administration: a case report and a comprehensive evidence-based review. Reg Anesth Pain Med. 2019;44:721-729. [Published correction appears in Reg Anesth Pain Med 2019;44:908.].
43. Samardzic D, Thamburaj K. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy. J Neuroimaging. 2015;25:136-139.
44. Park KW, Im SB, Kim BT, Hwang SC,et al. Neurotoxic manifestations of an overdose intrathecal injection of gadopentetate dimeglumine. J Korean Med Sci. 2010;25:505-508.
45. Martineau, P., Chakraborty, S., Faiz, K., & Shankar, J. Imaging of the spontaneous low cerebrospinal fluid pressure headache: a review. Canadian Assoc Radiol J. 2020;71:174-185.
46. Patelb M, Atyani A, Salameh JP, McInnes M, & Chakraborty S. Safety of intrathecal administration of gadolinium-based contrast agents: a systematic review and meta-analysis. Radiology. 2020;297:75-83.
47. Evans RW, Armon C, Frohman EM, Goodin DS. Assessment: prevention of post-lumbar puncture headaches: report of the therapeutics and technology assessment subcommittee of the american academy of neurology. Neurology. 2000;55:909-914.
48. Woodcock RJ, Marx WF, Johnson RM, Lowe JM, Lipper MH, Kallmes DF. Needle diameter in outpatient myelography: rates of adverse effects and current practice trends. Neuroradiology. 2000;42:371-374.
49. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014;270:834-841. https://doi.org/10.1148/radiol.13131669
50. Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB. Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 2017;16:564-570.
https://doi.org/10.1016/s1474-4422(17)30158-8
51. Radbruch A, Haase R, Kieslich PJ, Weberling LD, et al. No signal intensity increase in the dentate nucleus on unenhanced T1-weighted MR images after more than 20 serial injections of macrocyclic gadolinium-based contrast agents. Radiology 2017;282:699-707. https://doi.org/10.1148/radiol.2016162241
52. Ozturk K, Nas OF, Soylu E, Hakyemez B. Signal changes in the Dentate Nucleus and Globus Pallidus on unenhanced T1-weighted Magnetic Resonance Images after intrathecal administration of macrocyclic gadolinium contrast agent. Invest Radiol. 2018;53:535-540.
53. Öner AY, Barutcu B, Aykol Ş, Tali ET. Intrathecal contrast-enhanced Magnetic Resonance Imaging–related brain signal changes: Residual gadolinium deposition? Invest Radiol. 2017;52:195-197.
54. Edeklev CS, Halvorsen M, Løvland G, Vatnehol SA S, et al. Intrathecal use of gadobutrol for glymphatic MR imaging: prospective safety study of 100 patients. American Journal of Neuroradiology, 2019;40:1257-1264.
55.EX. Halvorsen M, Edeklev CS, Fraser-Green J, Løvland G, et al. Off-label intrathecal use of gadobutrol: safety study and comparison of administration protocols. Neuroradiology. 2021;63:51-61.
56. Leonetti J, Anderson D, Marzo S, Moynihan G, Siqueira MG, et al. Cerebrospinal fluid fistula after transtemporal skull base surgery. Otolaryngol Head Neck Surg. 2001;124:511-514.
57. Dos Santos LR, Cernea CR, Brandao LG. et al. Results and prognostic factors in skull base surgery. Am J Surg. 1994;168:481-484.
58. Mendizabal GR, Moreno BC, Flores CC. Cerebrospinal fluid fistula: frequency in head injuries. Rev Laryngol Otol Rhinol (Bord). 1992;113:423-425.
59. Bernal-Sprekelsen M, Alobid I,Mullol J,Trobat F, et al. (2005). Closure of cerebrospinal fluid leaks prevents ascending bacterial meningitis. Rhinology. 2055;43:277.
60. Reddy M, Baugnon K. Imaging of cerebrospinal fluid rhinorrhea and otorrhea. Radiol Clin North Am 2017;55:167–187.
61. Hiremath SB, Gautam AA, Sasindran V, Therakathu J, & Benjamin G. Cerebrospinal fluid rhinorrhea and otorrhea: A multimodality imaging approach. Diagnostic and Interventional Imaging. 2019;100:3-15.
62. Aiken AH, Hoots J, Saindane A, et al. Incidence of cerebellar tonsillar ectopia in idiopathic intracranial hypertension: a mimic of the Chiari I malformation. Am J Neuroradiol. 2012;33:1901-1906.
63. Constanzo F, Pinto J, Sedaghat S, & Schmidt T. Pseudo-Cerebrospinal fluid leaks of the anterior skull base: algorithm for diagnosis and management. J of Neurol Surg Part B: Skull Base. 2021;82:351-356.
64. Vemuri NV, Karanam LS, Manchikanti V, Dandamudi S., et al. Imaging review of cerebrospinal fluid leaks. Indian Journal of Radiology and Imaging. 2017;27:441-446.
65. Baker EH, Wood DM, Brennan AL, Baines DL, Philips BJ. New insights into the glucose oxidase stick test for cerebrospinal fluid rhinorrhoea. Emerg Med J. 2005;22:556-557.
66. Zapalac JS, Marple BF, Schwade ND. Skull base cerebrospinal fluid fistulas: a comprehensive diagnostic algorithm. Otolaryngol Head Neck Surg. 2002;126: 669-676.
67. De la Peña MJ, Caicoy AG, Rodriguez MR, et al. Spontaneous skull base meningoencephaloceles and cerebrospinal fluid fistulas. Radiographics. 2013;33:553-570.
68. Prosser JD, Vender JR, Solares CA. Traumatic cerebrospinal fluid leaks. Otolaryngol Clin North Am. 2011;44:857-873.
69. Hiremath SB, Gautam AA, Sasindran V, Therakathu J, & Benjamin G. Cerebrospinal fluid rhinorrhea and otorrhea: A multimodality imaging approach. Diagnostic and Interventional Imaging. 2019;100:3-15.
70. Chow JM, Goodman D, Mafee MF. Evaluation of CSF rhinorrhea by computerized tomography with metrizamide. Otolaryngol Head Neck Surg. 2003;100:99-105.
71. Ecin G, Oner AY, Tokgoz N, Ucar M, et al. T2-weighted vs. intrathecal contrast-enhanced MR cisternography in the evaluation of CSF rhinorrhea. Acta Radiol. 2005;54:698-701.
72. Hatipoğlu HG, Durakoğlugil T,Ciliz D,Yüksel E. Comparison of FSE T2W and 3D FIESTA sequences in the evaluation of posterior fossa cranial nerves with MR cisternography. Diagn Interv Radiol. 2007;13:56-60.
73. Rajeswaran R, Chandrasekharan A, Mohanty S, Murali K, et al. Role of MR cisternography in the diagnosis of cerebrospinal fluid rhinorrhoea with diagnostic nasal endoscopy and surgical correlation. Indian J Radiol Imaging. 2006;16:315.
74. Mostafa BE, Khafagi A, & Morcos JJ. Combined HRCT and MRI in the detection of CSF rhinorrhea. Skull Base. 2004;14:157-162.
75. Zapalac JS, Marple BF, Schwade ND. Skull base cerebrospinal fluid fistulas: a comprehensive diagnostic algorithm. Otolaryngol Head Neck Surg. 2002;126:669-676.
76. Delgaudio JM, Baugnon KL, Wise SK, Patel ZM, et al. Magnetic resonance cisternogram with intrathecal gadolinium with delayed imaging for difficult to diagnose cerebrospinal fluid leaks of the anterior skull base. Int Forum Allergy Rhinol. 2015;5:333-338.
77. Muñoz A, Martínez-León M, Vázquez É, Pérez da Rosa S, and Crespo J. Intracystic Gadolinium-Enhanced MRI in the Evaluation of Residual Giant-Cystic Craniopharyngiomas in Children: Report of Four Cases. J Neuroimag. 2014;24:393-398.
78. Duman, IE, Demerath T, Stadler A, Elsheikh S, et al. High-resolution gadolinium-enhanced MR cisternography using compressed-sensing T1 SPACE technique for detection of intracranial CSF leaks. Am J Neuroradiol. 2021;42:116-118.

79. D’Antona L, Merchan MAJ, Vassiliou A, Watkins LD, Davagnanam I, Toma AK, et al.(2021). Clinical presentation, investigation findings, and treatment outcomes of spontaneous intracranial hypotension syndrome: a systematic review and meta-analysis. JAMA Neurlo. 2021:78:329-337.
80. Arnold M. Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38:1–211
81. G. Guan J, Couldwell WT, Taussky P. Intracranial hypotension as a complication of lumbar puncture prior to elective aneurysm clipping. Surg Neurol Int. 2014;5(Suppl 9):S427–S429.
82. Farnsworth PJ, Madhavan AA, Verdoorn JT, Shlapak JT, Johnson DP, Shlapak DP, et al. Spontaneous intracranial hypotension: updates from diagnosis to treatment. Neuroradiology. 2023;233-243.
83. Schrijver I, Schievink WI, Godfrey M, Meyer FB, & Francke U. Spontaneous spinal cerebrospinal fluid leaks and minor skeletal features of Marfan syndrome: a microfibrillopathy. J Neurosurg. 2002;96:483-489.
84. Mokri B, Maher CO, Sencakova D. Spontaneous CSF leaks: underlying disorder of connective tissue. Neurology. 2002;58:814–816
85. Ferrante, E., Trimboli, M., & Rubino, F. Spontaneous intracranial hypotension: review and expert opinion. Acta Neurologica Belgica. 2020;120:9-18.
86. Schievink WI, Maya MM, Jean-Pierre S, Nuño M, Prasad RS, & Moser FG. A classification system of spontaneous spinal CSF leaks. Neurology. 2016;87:673-679.
87. Lay CM.Low cerebrospinal fluid pressure headache. Curr Treat Options Neurol. 2002;4:357-363.
88. Schievink WI, Maya MM, Louy C, MOser FG, Tourje J. Diagnostic criteria for spontaneous spinal CFS leaks and intracranial hypotension. Am J Neuroradiol. 2008:29:853-856.

89. Jones LC, Butteriss D, & Scoffings, D. Spontaneous intracranial hypotension: the role of radiology in diagnosis and management. Clinical Radiology. 2021;77:e181-e194.

90. Lin J P, Zhang SD, He FF, Liu MJ, & MaXX. The status of diagnosis and treatment to intracranial hypotension, including SIH. The Journal of Headache and Pain. 2017;18:1-8.

91. Kranz PG, Malinzak MD, Amrhein TJ, & Gray L. Update on the diagnosis and treatment of spontaneous intracranial hypotension. Current pain and headache reports. 2017;21:1-8.

92. Luetmer PH, Schwartz KM, Eckel LJ, Hunt CH, Carter RE, Diehn FE. When should I do dynamic CT myelography? Predicting fast spinal CSF leaks in patients with spontaneous intracranial hypotension. Am J Neuroradiol. 2012;33:690-4. doi:10.3174/ajnr.A2849

93. M, AE. Miyazawa K, Shiga Y, Hasegawa T, Endoh M, Okita N, Higano S, et al. CSF hypovolemia vs intracranial hypotension in "spontaneous intracranial hypotension syndrome". Neurology. 2003;60:941–7. doi:10.1212/01.wnl.0000049933.51044.81.

94. Mokri B. Spontaneous cerebrospinal fluid leaks: from intracranial hypotension to cerebrospinal fluid hypovolemia—evolution of a concept. Mayo Clin Proc. 1999;74:1113–23. doi:10.4065/74.11.1113
95. Kranz PG, Tanpitukpongse TP, Choudhury KR, Amrhein TJ, Gray L. How common is normal cerebrospinal fluid pressure in spontaneous intracranial hypotension? Cephalalgia. 2016; 36: 1209-17.
96. Häni L, Fung C, Jesse CM, Ulrich CT et al. Insights into the natural history of spontaneous intracranial hypotension from infusion testing. Neurology. 2020;95:e247-55.
97. Schievink WI, Mokri DW, Mokri B, Silberstein S, Bousser MG, Goadsby PJ. Diagnostic criteria for headache due to spontaneous intracranial hypotension: a perspective. Headache. 2011;51:1442-1444. doi:10.1111/j.1526-4610.2011.01911.x
98. Liu FC, Fuh JL, Wang YF, Wang SJ. Connective tissue disorders in patients with spontaneous intracranial hypotension. Cephalalgia. 2011;31:691-695. doi:10.1177/0333102410394676
99. Reinstein E, Pariani M, Bannykh S, Rimoin DL, Schievink WI. Connective tissue spectrum abnormalities associated with spontaneous cerebrospinal fluid leaks: a prospective study. Eur J Hum Genet. 2013;21:386-390. doi:10.1038/ejhg.2012.191
100. Schievink WI. Spontaneous spinal cerebrospinal fluid leaks. Cephalalgia. 2008;28:1345–1356.
101. Chen S, Hagiwara M, Roehm P. Spontaneous intracranial hypotension presenting with severe sensorineural hearing loss and headache. Otol Neurotol. 2012;33:e65–e66.
102. Schievink WI, Maya MM, Louy C, Moser FG, Sloninsky L. Spontaneous intracranial hypotension in childhood and adolescence. J Pediatr. 2013;163:504–510.
103. Capizzano AA, Lai L, Kim J, Rizzo, M et al. Atypical presentations of intracranial hypotension: comparison with classic spontaneous intracranial hypotension. Am J Neuroradiol. 2016;37:1256-1261.
104. Tanaka Y, Tosaka M, Fujimaki H, Honda F, Yoshimoto Y. Sex- and age-related differences in the clinical and neuroimaging characteristics of patients with spontaneous intracranial hypotension: a records review. Headache. 2016;56:1310–6. doi:10.1111/head.12887
105. Kranz PG, Amrhein TJ, Gray L. CSF venous fistulas in spontaneous intracranial hypotension: imaging characteristics on dynamic and CT myelography. Am J Roentgenol 2017;209:1360-66.
106. Takai K, Niimura M, Hongo H, Umekawa M et al. Disturbed consciousness and coma: diagnosis and management of intracranial hypotension caused by a spinal cerebrospinal fluid leak.World Neurosurg. 2019;121:e700-e711.
107. Kranz PG, Gray L, Malinzak MD, Amrhein TJ. Spontaneous intracranial hypotension: pathogenesis, diagnosis, and treatment. Neuroimaging Clin N Am. 2019; 29:581-594.
108. Schievink WI. Misdiagnosis of spontaneous intracranial hypotension. Arch Neurol. 2003;60:1713–1718.
109. Magnaes B. Body position and cerebrospinal fluid pressure. Part 1: clinical studies on the effect of rapid postural changes. J Neurosurg. 1976;44:687–97. doi:10.3171/jns.1976.44.6.0687.
110. Schievink WI, Schwartz MS, Maya MM, Moser FG, Rozen TD. Lack of causal association between spontaneous intracranial hypotension and cranial cerebrospinal fluid leaks. J Neurosurg. 2012;116:749-54. doi:10.3171/2011.12.JNS111474.
111. Dobrocky T, Mosimann PJ, Zibold F, Mordasini P et al. Cryptogenic cerebrospinal fluid leaks in spontaneous intracranial hypotension: role of dynamic CT myelography. Radiology. 2018;289:766 -72.
112. Farb RI, Nicholson PJ, Peng PW, Massicotte EM, et al. Spontaneous intracranial hypotension: a systematic imaging approach for CSF leak localization and management based on MRI and digital subtraction myelography. Am J Neurorad. 2019;40:745-753.
113. Beck J, Ulrich CT, Fung C, Fichtner J, et al. Diskogenic microspurs as a major cause of intractable spontaneous intracranial hypotension. Neurology. 2016;87:1220–6. doi:10.1212/WNL.0000000000003122
114. Yoshida H, Takai K, Taniguchi M. Leakage detection on CT myelography for targeted epidural blood patch in spontaneous cerebrospinal fluid leaks: calcified or ossified spinal lesions ventral to the thecal sac. J Neurosurg Spine. 2014;21:3:432-41. doi:10.3171/2014.5.SPINE13549
115. Thielen KR, Sillery JC, Morris JM, Hoxworth JM, et al. Ultrafast dynamic computed tomography myelography for the precise identification of high-flow cerebrospinal fluid leaks caused by spiculated spinal osteophytes. J Neurosurg Spine. 2015;22(3):324–31. doi:10.3171/2014.10.SPINE14209
116. Gille O, Soderlund C, Razafimahandri HJ, Mangione P, Vital JM. Analysis of hard thoracic herniated discs: review of 18 cases operated by thoracoscopy. Eur Spine J. 2006;15:537-42. doi:10.1007/s00586-005-1014-3
117. Kranz PG, Stinnett SS, Huang KT, Gray L. Spinal meningeal diverticula in spontaneous intracranial hypotension: analysis of prevalence and myelographic appearance. Am J Neuroradiol. 2013;34:1284–9. doi:10.3174/ajnr.A3359
118. Sakurai, K., Nishio, M., Yamada, K., Shimohira, et al. Comparison of the radioisotope cisternography findings of spontaneous intracranial hypotension and iatrogenic cerebrospinal fluid leakage focusing on chronological changes. Cephalalgia. 2012;32:1131-1139.
119.Schievink WI, Moser FG, & Maya MM. CSF–venous fistula in spontaneous intracranial hypotension. Neurology. 2014;83:472-473.
120. Schievink WI, Maya M, Prasad RS, Wadhwa VS, Cruz RB, Moser FG, & Nuno M. Spontaneous spinal cerebrospinal fluid‐venous fistulas in patients with orthostatic headaches and normal conventional brain and spine imaging. Headache: The Journal of Head and Face Pain. 2021;61:387-391.
121. Kranz PG, Gray L, Malinzak MD, Houk JL, Kim DK, & AmrheinTJ. CSF–venous fistulas: anatomy and diagnostic imaging. Am J of Roentgenol. 2021;217:1418-1429.
122. Schievink WI, Moser FG, Maya MM. CSF-venous fistula in spontaneous intracranial hypotension. Neurology. 2014;83:472-73.
123. Schievink WI, Moser FG, Maya MM, & Prasad RS. Digital subtraction myelography for the identification of spontaneous spinal CSF-venous fistulas. J Neurosurg: Spine. 2016;24:960-964.
124. Luetzen N, Dovi-Akue P, Fung C, Beck J, & Urbach H. Spontaneous intracranial hypotension: diagnostic and therapeutic workup. Neuroradiology. 2021;63:1765-1772.
125. Dillon WP. Challenges in the diagnosis and treatment of spontaneous intracranial hypotension. Radiology. 2018;289:773-774.
126. Callen AL, Timpone VM, Schwertner A, Zander D. et al. Algorithmic Multimodality Approach to Diagnosis and Treatment of Spinal CSF Leak and Venous Fistula in Patients With Spontaneous Intracranial Hypotension. Am J Roentgenol. 2022;219:292-301.
127. Mokri B. The Monro–Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001;5612:1746-1748.
128. Ferrante E, Regna-Gladin C, Arpino I, Rubino F et al. Pseudo-subarachnoid hemorrhage: a potential imaging pitfall associated with spontaneous intracranial hypotension. Clin Neurol Neurosurg. 2013;115:2324–2328.
129. Savoiardo M, Minati L, Farina L, Simone T et al. Spontaneous intracranial hypotension with deep brain swelling. Brain J Neurol. 2007;130:):1884–1893. doi:10.1093/brain/awm101
130. Schievink WI, Maya MM, Tourje J & Moser FG, et al. Pseudo-subarachnoid hemorrhage: a CT-finding in spontaneous intracranial hypotension. Neurology. 2005;65:135e7. https://doi.org/10.1212/01.wnl
131. Dobrocky T, Grunder L, Breiding PS, Brnaca M et al. Assessing spinal cerebrospinal fluid leaks in spontaneous intracranial hypotension with a scoring system based on brain magnetic resonance imaging findings. JAMA Neurol. 2019;76:580-587. https://doi.org/10.1001/jamaneurol.2018.4921
132. Tosaka M, Sato N, Fujimaki H, Tanaka K et al. Diffuse pachymeningeal hyperintensity and subdural effusion/hematoma detected by fluid-attenuated inversion recovery MR imaging in patients with spontaneous intracranial hypotension. Am J Neuroradiol. 2008;29:1164-1170. doi.org/10.3174/ajnr.A1041.
133. Schievink WI, Nuño M, Rozen TD, Maya MM, et al. Hyperprolactinemia due to spontaneous intracranial hypotension. J Neurosurg. 2015;122:1020e5. https://doi.org/10.3171/2014.9.JNS132687
134. Stone JH, Zen Y, Deshpande V. IgG4-related disease. N Engl J Med. 2012;366:539-551.
135. Smith JK, Matheus MG, Castillo M. Imaging manifestations of neurosarcoidosis. Am J Roentgenol. 2004;182:289-295.
136. Pickuth D, Spielmann RP, Heywang-Köbrunner SH. Role of radiology in the diagnosis of neurosarcoidosis. Europ Radiol. 2000;10:941-944.
137. Fonseka CL, Kanakkahewa TE, Singhapura S, Hewavithana JS et al. Tuberculous pachymeningitis presenting as a diffused dural thickening in a patient with chronic headache and recurrent neurological abnormalities for more than a decade: a case report and a review of the literature. Case Rep Infect Dis. 2018.
138. Rosa M Jr, de Almeida Cacador T, Biasutti C, et al. Teaching NeuroImages: skull and dural lesions in neurosyphilis. Neurology. 2016;87: e129-30.
139. Bond KM, Benson JC, Cutsforth-Gregory JK, Kim DK, Diehn FE, & Carr CM. Spontaneous intracranial hypotension: atypical radiologic appearances, imaging mimickers, and clinical look-alikes. Am J Neurorad. 2020;41:1339-1347.
140. Chen YC, Wang YF, Li JY, Chen SP, et al. Treatment and prognosis of subdural hematoma in patients with spontaneous intracranial hypotension. Cephalalgia. 2016;36:225-231.
141. Farb RI, Forghani R, Lee SK, Mikulis DJ, Agid R. The venous distension sign: a diagnostic sign of intracranial hypotension at MR imaging of the brain. Am J Neuroradiol. 2007;28(8):1489–93. doi:10.3174/ajnr.A0621
142. Kumar N, Cohen-Gadol AA, Wright RA, Miller M, et al. Superficial siderosis. Neurology. 2006;66:1144-1152.
143. Uchino A, Aibe H, Itoh H, Aiko Y, Tanaka M. Superficial siderosis of the central nervous system. Its MRI manifestations. Clin Imag 1997;21: 241-245.
144. Webb AJ, Flossmann E, Armstrong RJ. Superficial siderosis following spontaneous intracranial hypotension. Pract Neurol. 2015;15:382-384.
145. Wilson, Duncan. Infratentorial superficial siderosis: classification, diagnostic criteria, and rational investigation pathway. Annals of neurology. 2017;81: 333-343.
146. Friedauer L, Rezny‐Kasprzak B, Steinmetz H, du Mesnil de Rochemont R, & Foerch C. Spinal dural leaks in patients with infratentorial superficial siderosis of the central nervous system-Refinement of a diagnostic algorithm. Europ J of Neurol. 2022;29:1136-1144.
147. Koeppen AH, Michael SC, Li D, Chen Z, et al. The pathology of superficial siderosis of the central nervous system. Acta Neuropathol. 2008;116: 371-382.
148. Kranz PG, Amrhein TJ, Choudhury KR, Tanpitukpongse TP, Gray L. Time-dependent changes in dural enhancement associated with spontaneous intracranial hypotension. Am J Roentgenol. 2016;207:1283-1287. doi:10.2214/AJR.16.16381
149. Schievink WI. Spontaneous spinal cerebrospinal fluid leaks and intracranial hypotension. JAMA. 2006;295:2286–96. doi:10.1001/jama.295.19.2286
150. Spelle L, Boulin A, Pierot L, et al. Spontaneous intracranial hypotension: MRI and radionuclide cisternography findings. J Neurol Neurosurg Psychiatry. 1997;62:291-292.
151. CF.Sehgal AK, Sethi RS, Raghavan S, & Namgyal PA. Radionuclide cisternography: a prudent investigation in diagnosing spontaneous intracranial hypotension. Indian J Nucl Med. 2013;28:42–44.
152. Sakurai, M. Nishio, S. Sasaki, H. Ogino, J. Tohyama, K. Yamada, Y. Shibamoto Postpuncture CSF leakage: a potential pitfall of radionuclide cisternography. Neurology. 2010;75:1730-1734.
153. Wang YF, Fuh JL, Lirng JF, Chen SP, Hseu SS,Wu JC, Wang SJ. Cerebrospinal fluid leakage and headache after lumbar puncture: a prospective non-invasive imaging study. Brain. 2015;138:1492-1498.
154. Evangelou P, Omrane MA, Thurow J, Mix M, et al. 68Ga-DOTA Positron Emission Tomography for Diagnosis of Spinal Cerebrospinal Fluid Leaks. J Nuclear Med. 2022;122.264059; DOI: https://doi.org/10.2967/jnumed.122.264059
155. Tomoda Y, Korogi T, Aoki T, Morioka, et al. Detection of cerebrospinal fluid leakage: initial experience with three-dimensional fast spin-echo magnetic resonance myelography. Acta Radiol. 2008;49:197-203.
156. Watanabe A, Horikoshi T, Uchida M, Koizumi H, et al. Diagnostic value of spinal MR imaging in spontaneous intracranial hypotension syndrome. Am J Neuroradiol. 2009;30:147-151.
157. Schievink WI, Maya MM, Tourje J. False localizing sign of C1e2 cerebrospinal fluid leak in spontaneous intracranial hypotension. J Neurosurg. 2004;100:639-644. https://doi.org/10.3171/jns.2004.100.4.0639
158. Dobrocky T, Winklehner A, Breiding PS, Grunder L, et al. Spine MRI in Spontaneous Intracranial Hypotension for CSF Leak Detection: Nonsuperiority of Intrathecal Gadolinium to Heavily T2-Weighted Fat-Saturated Sequences. Am J Neuroradiol. 2020;41:1309-1315.
159. Piechowiak EI, Pospieszny K, Haeni L, Jesse CM, et al. Role of conventional dynamic myelography for detection of high-flow cerebrospinal fluid leaks: optimizing the technique. Clinical Neurorad. 2021;31:633-641.
160. Ferrante E, Rubino F, Beretta F, Regna-Gladin, & Ferrante MM. Treatment and outcome of subdural hematoma in patients with spontaneous intracranial hypotension: a report of 35 cases. Acta Neurol Belg. 2018;118:61-1170.
161. Maus T, Schueler BA, Leng S, Magnuson D, et al. Radiation dose incurred in the exclusion of vascular filling in transforaminal epidural steroid injections: fluoroscopy, digital subtraction angiography, and CT/fluoroscopy. Pain Med. 2014;15:1328-1333.
162. Houk JL, Marin DM, Malinzak MD, Kranz PG, & Amrhein T J. Dual energy CT for the identification of CSF-venous fistulas and CSF leaks in spontaneous intracranial hypotension: report of four cases. Radiology Case Reports. 2022;17:1824-1829.
163. Schievink WI, Maya MM, Moser F, Prasad R, et al. Multiple spinal CSF leaks in spontaneous intracranial hypotension: do they exist?. Neurology: Clinical Practice. 2021;11:e691-e697.
164. Amrhein TJ, Gray L, Malinzak MD, & Kranz PG. Respiratory phase affects the conspicuity of CSF-venous fistulas in spontaneous intracranial hypotension. Am J Neuroradiol .2020;41:1754e6. https://doi.org/10.3174/ajnr.A6663.
165. Kinsman KA, Verdoorn JT, Luetmer PH PH, Clark MS, & Diehn FE. Renal contrast medium on CT myelography: diagnostic value in patients with spontaneous intracranial hypotension. Am J Neuroradiol. 2019;40:376e81. https://
doi.org/10.3174/ajnr.A5934
166. Kranz PG, Gray L, Mallinzak MD, Houk, JL, Kim, DK & Amrhein TJ. CSF-venous fistulas: anatomy and diagnostic imaging. Am J Roentgenol. 2021;217:1418e29. https://doi.org/10.2214/AJR.21.26182
167. Schievink WI, Maya MM, Moser FG, Prasad, RS, et al. Lateral decubitus digital subtraction myelography to identify spinal CSF-venous fistulas in spontaneous intracranial hypotension. J Neurosurg Spine. 2019; 31: 902–05.
168. Mamlouk MD, Ochi RP, Jun P, Shen PY. Decubitus CT myelography for CSF-venous fistulas: a procedural approach. Am J Neuroradiol. 2021; 42:32-36.
169. Kim DK, Brinjikji W, Morris PP, Diehn PP, et al. Lateral decubitus digital subtraction myelography: tips, tricks, and pitfalls. Am J Neuroradiol. 2020; 41: 21–28.
170. Caton MT, Laguna B, Soderlund KA, Dillon WP, Shah VN. Spinal compliance curves: preliminary experience with a new tool for evaluating suspected CSF venous fistulas on CT myelography in patients with spontaneous intracranial hypotension. Am J Neuroradiol. 2021; 42:986-992.
171. Clark MS, Diehn FE, Verdoorn JT, Lehman VT, et al. Prevalence of hyperdense paraspinal vein sign in patients with spontaneous intracranial hypotension without dural CSF leak on standard CT myelography. Diagn Interv Radiol. 2018;24:54-59.
172. Kranz PG, Amrhein TJ, Schievink WI, Karikari IO, et al The “hyperdense paraspinal vein” sign: a marker of CSF-venous fistula. Am J Neuroradiol. 2016;37:1379–1381
173. Behbahani S, Raseman J, Orlowski H, Sharma A, Eldaya R. Renal excretion of contrast on CT myelography: a specific marker of CSF leak. Am J Neu
174. Kinsman KA, Verdoorn JT, Luetmer PH, Clark MS, Diehn FE. Renal contrast on CT myelography: diagnostic value in patients with spontaneous intracranial hypotension. Am J Neuroradiol. 2019;40: 376-81.
175. Hattingen E, DuMesnil R, Pilatus U,Raabe A, T. et al.
Contrast-enhanced MR myelography in spontaneous intracranial hypotension: description of an artefact imitating CSF leakage.
Eur Radiol. 2009;19:1799-1808.
176. Williams EC, Buchbinder BR, Ahmed S, Alston TA,et al. Spontaneous intracranial hypotension: presentation, diagnosis, and treatment. Anesthesiology. 2014;121:1327-33.
177. Chazen JL, Talbott JF, Lantos JE, Dillon WP. MR myelography for identification of spinal CSF leak in spontaneous intracranial hypotension. Am J Neuroradiol. 2014;35:2007-2012.
178. Akbar J, Luetmer PH, Schwartz K, Hunt C, et al. The role of MR myelography with intrathecal gadolinium in localization of spinal CSF leaks in patients with spontaneous intracranial hypotension. Am J Neuroradiol. 2012;33:35–540. DOI: 10.3174/ajnr.A2815
179. Albes G, Weng H, Horvath D, Musahl C, et al. Detection and treatment of spinal CSF leaks in idiopathic intracranial hypotension. Neuroradiology. 2012;54:1367–73. DOI: 10.1007/s00234-012-1055-1053.
180. Graff-Radford SB, Schievink WI. High-pressure headaches, low pressure syndromes, and CSF leaks: diagnosis and management. Headache. 2014;54:394-401.
181. Griauzde J, Gemmete JJ, Pandey AS, Chaudhary N. Intrathecal preservative-free normal saline challenge magnetic resonance myelography for the identification of cerebrospinal fluid leaks in spontaneous intracranial hypotension. J Neurosurg. 2015;123:732-736.
182. Tyagi A. Management of spontaneous intracranial hypotension. Pract Neurol. 2016;16:87-88.
183. GE. Sudlow C, Warlow C. Epidural blood patching for preventing and treating post-dural puncture headache. Cochrane Database Syst Rev. 2010(1).