Ingestible capsules carrying 3D printed springs: a possible future prospective for Short Bowel Syndrome treatment?
Main Article Content
Abstract
Background: Short Bowel Syndrome (SBS) is a malabsorption syndrome characterised by a severe reduction of the absorbent surface of the intestinal mucosa. Treatment of this condition needs multi-professional teams and different therapies, which are not always enough to ensure enteral autonomy. New techniques are being explored, particularly distraction enterogenesis, which can allow the lengthening of the residual intestines of these patients. This study aims to demonstrate the possibility of using biodegradable materials to design ingestible capsules which carry 3D-printed springs capable of reaching the patient’s intestine. These devices could be used as a slightly invasive distraction enterogenesis technique, stimulating cell proliferation and intestinal elongation without surgery.
Materials and methods: Capsules were realised with gelatin from pigskin type A from Sigma-Aldrich mixed with regenerated silk fibroin (RS) obtained by reverse engineering on Bombyx Mori cocoons. Springs are composed of a structure of regenerated silk (RS) modified with graphene nanoplatelets (GNP) externally covered with a biodegradable polyhydroxybutyrate-valerate (PHBV) shell. Springs were realised with 3D printing, through which, with an extruder, polyhydroxybutyrate-valerate and regenerated silk compounds are deposited simultaneously in a 3D structure. The springs’ capsules were then analysed with solvents simulating the gastric and intestinal environment to verify their resistance to degradation. Phosphate Buffered Saline (PBS), composed of calcium chloride and magnesium chloride (CaCl2 + MgCl2), with a pH value of 7.4, was used as a degradative agent; for the gastric tract, we chose the acetic acid, CH3COOH, at 12% with a pH value of 2.3.
Results: While the gelatin-only capsules showed poor resistance to degradation in Phosphate Buffered Saline, the new compound based on gelatin and regenerated silk showed excellent resistance in gastric and intestinal environments, allowing the pills to reach the intestine without dissolving. In addition, the results show variability in the release times of the springs as a function of the pH values and the elastic constants of the springs used: the latter determined that in acetic acid, the release time is increased at an increase of the elastic constant. In contrast, in Phosphate Buffered Saline, an opposite trend was observed.
Conclusions: Our results confirm the possibility of using gelatin, silk fibroin and polyhydroxybutyrate-valerate to design devices capable of transporting implantable endoluminal 3D structures, drugs, or growth factors, laying the foundations for a new approach to distraction enterogenesis in Short Bowel Syndrome (SBS) patients.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Pironi L, Arends J, Baxter J, et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clinical Nutrition. 2015;34(2):171-180. doi:10.1016/j.clnu.2014.08.017
3. D’Antiga L, Goulet O. Intestinal Failure in Children: The European View. Journal of Pediatric Gastroenterology & Nutrition. 2013; 56(2):118-126. doi:10.1097/MPG.0b013e318268a9e3
4. Billiauws L, Maggiori L, Joly F, Panis Y. Medical and surgical management of short bowel syndrome. Journal of Visceral Surgery. 2018;155(4):283-291. doi:10.1016/j.jviscsurg.2017.12.012
5. Coletta R, Khalil BA, Morabito A. Short bowel syndrome in children: Surgical and medical perspectives. Seminars in Pediatric Surgery. 2014;23(5):291-297. doi:10.1053/j.sempedsurg.2014.09.010
6. Cserni T, Polonkai E, Torok O, et al. In utero incarceration of congenital diaphragmatic hernia. Journal of Pediatric Surgery. 2011;46(3):551-553. doi:10.1016/j.jpedsurg.2010.11.036
7. Hosseini HS, Dunn JCY. Biomechanical Force Prediction for Lengthening of Small Intestine during Distraction Enterogenesis. Bioengineering. 2020;7(4):140. doi:10.3390/bioengineering7040140
8. Hosseini HS, Taylor JS, Wood LSY, Dunn JCY. Biomechanics of small intestine during distraction enterogenesis with an intraluminal spring. Journal of the Mechanical Behavior of Biomedical Materials. 2020;101:103413. doi:10.1016/j.jmbbm.2019.103413
9. Printz H, Schlenzka R, Reguadt P, et al. Small Bowel Lengthening by Mechanical Distraction. Digestion. 1997;58(3):240-248. doi:10.1159/000201450
10. Foker JE, Kendall Krosch TC, Catton K, Munro F, Khan KM. Long-gap esophageal atresia treated by growth induction: the biological potential and early follow-up results. Seminars in Pediatric Surgery. 2009; 18(1):23-29. doi:10.1053/j.sempedsurg.2008.10.005
11. Sullins VF, Wagner JP, Suwarnasarn AT, Lee SL, Wu BM, Dunn JCY. A novel biodegradable device for intestinal lengthening. Journal of Pediatric Surgery. 2014;49(1):109-113. doi:10.1016/j.jpedsurg.2013.09.040
12. Fisher JG, Sparks EA, Khan FA, et al. Extraluminal distraction enterogenesis using shape-memory polymer. Journal of Pediatric Surgery. 2015;50(6):938-942. doi:10.1016/j.jpedsurg.2015.03.013
13. Park J, Puapong DP, Wu BM, Atkinson JB, Dunn JCY. Enterogenesis by mechanical lengthening: Morphology and function of the lengthened small intestine. Journal of Pediatric Surgery. 2004;39(12):1823-1827. doi:10.1016/j.jpedsurg.2004.08.022
14. Safford SD. Longitudinal mechanical tension induces growth in the small bowel of juvenile rats. Gut. 2005;54(8):1085-1090. doi:10.1136/gut.2004.061481
15. Okawada M, Mustafa Maria H, Teitelbaum DH. Distraction Induced Enterogenesis: A Unique Mouse Model Using Polyethylene Glycol. Journal of Surgical Research. 2011; 170(1):41-47. doi:10.1016/j.jss.2011.03.041
16. Shekherdimian S, Panduranga MK, Carman GP, Dunn JCY. The feasibility of using an endoluminal device for intestinal lengthening. Journal of Pediatric Surgery. 2010;45(8):1575-1580. doi:10.1016/j.jpedsurg.2010.03.015
17. Coletta R, Olivieri C, Persano G, Solari V, Inserra A, Morabito A. Expanding intestinal segment using osmotic hydrogel: An in vivo study. J Biomed Mater Res. 2019;107(4):1304-1309. doi:10.1002/jbm.b.34224
18. Huynh N, Rouch JD, Scott A, et al. Spring-mediated distraction enterogenesis in-continuity. Journal of Pediatric Surgery. 2016;51(12):1983-1987. doi:10.1016/j.jpedsurg.2016.09.024
19. Huynh N, Dubrovsky G, Rouch JD, et al. Three-dimensionally printed surface features to anchor endoluminal spring for distraction enterogenesis. Chan C, ed. PLoS ONE. 2018;13(7):e0200529. doi:10.1371/journal.pone.0200529
20. Kim UJ, Park J, Joo Kim H, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26(15):2775-2785. doi:10.1016/j.biomaterials.2004.07.044
21. Foster LJR, Tighe BJ. Enzymatic assay of hydroxybutyric acid monomer formation in poly(β-hydroxybutyrate) degradation studies. Biomaterials. 1995;16(4):341-343. doi:10.1016/0142-9612(95)93263-D
22. Valentini L, Pacini L, Errante F, et al. Peptide-Functionalized Silk Fibers as a Platform to Stabilize Gelatin for Use in Ingestible Devices. Molecules. 2022;27(14): 4605. doi:10.3390/molecules27144605
23. Pierce BF, Pittermann E, Ma N, et al. Viability of Human Mesenchymal Stem Cells Seeded on Crosslinked Entropy-Elastic Gelatin-Based Hydrogels. Macromol Biosci. 2012;12(3):312-321. doi:10.1002/mabi.201100237
24. Li H. Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials. 2004;25(24):5473-5480. doi:10.1016/j.biomaterials.2003.12.052
25. De Maria C, Chiesa I, Morselli D, et al. Biomimetic Tendrils by Four Dimensional Printing Bimorph Springs with Torsion and Contraction Properties Based on Bio‐Compatible Graphene/Silk Fibroin and Poly(3‐Hydroxybutyrate‐ co ‐3‐Hydroxyvalerate). Adv Funct Materials. 2021;31(52):2105665. doi:10.1002/adfm.202105665
26. Barducci L, Norton JC, Sarker S, et al. Fundamentals of the gut for capsule engineers. Prog Biomed Eng. 2020; 2(4):042002. doi:10.1088/2516-1091/abab4c
27. Bianchi A, Morabito A. The dilated bowel: a liability and an asset. Seminars in Pediatric Surgery. 2009;18(4):249-257. doi:10.1053/j.sempedsurg.2009.07.010
28. Murphy F, Khalil BA, Gozzini S, King B, Bianchi A, Morabito A. Controlled tissue expansion in the initial management of the short bowel state. World J Surg. 2011;35(5): 1142-1145. doi:10.1007/s00268-011-0991-0
29. Bianchi A. Intestinal loop lengthening--a technique for increasing small intestinal length. J Pediatr Surg. 1980;15(2):145-151. doi:10.1016/s0022-3468(80)80005-4
30. Cserni T, Takayasu H, Muzsnay Z, et al. New idea of intestinal lengthening and tailoring. Pediatr Surg Int. 2011;27(9):1009-1013. doi:10.1007/s00383-011-2900-x
31. Kim HB, Fauza D, Garza J, Oh JT, Nurko S, Jaksic T. Serial transverse enteroplasty (STEP): a novel bowel lengthening procedure. J Pediatr Surg. 2003;38(3):425-429. doi:10.1053/jpsu.2003.50073
32. Coletta R, Morabito A, Iyer K. Nontransplant Surgery for Intestinal Failure. Gastroenterology Clinics of North America. 2019;48(4):565-574. doi:10.1016/j.gtc.2019.08.009
33. Gigola F, Coletta R, Certini M, Del Riccio M, Forsythe L, Morabito A. Combined procedures for surgical short bowel syndrome: experience from two European centres. ANZ Journal of Surgery. Published online December 13, 2022:ans.18184. doi:10.1111/ans.18184
34. Sato T, Clevers H. Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications. Science. 2013;340(6137):1190-1194. doi:10.1126/science.1234852
35. Meran L, Massie I, Campinoti S, et al. Engineering transplantable jejunal mucosal grafts using patient-derived organoids from children with intestinal failure. Nat Med. 2020; 26(10):1593-1601. doi:10.1038/s41591-020-1024-z
36. Portelli KI, Thomas AL, Wood LS, Diyaolu M, Taylor JS, Dunn JCY. Distraction enterogenesis in the murine colon. Journal of Pediatric Surgery. 2022;57(7):1377-1381. doi:10.1016/j.jpedsurg.2021.10.005
37. Salimi-Jazi F, Thomas AL, Rafeeqi T, Diyaolu M, Wood LSY, Dunn JCY. The effect of spring diameter on porcine ileal distraction enterogenesis. Pediatr Surg Int. 2022; 39(1):19. doi:10.1007/s00383-022-05300-1
38. Rouch JD, Scott A, Jabaji ZB, et al. Basic fibroblast growth factor eluting microspheres enhance distraction enterogenesis. Journal of Pediatric Surgery. 2016;51(6):960-965. doi:10.1016/j.jpedsurg.2016.02.065
39. Rouch JD, Huynh N, Scott A, et al. Scalability of an endoluminal spring for distraction enterogenesis. Journal of Pediatric Surgery. 2016;51(12):1988-1992. doi:10.1016/j.jpedsurg.2016.09.023
40. Huynh N, Dubrovsky G, Rouch JD, et al. Feasibility and scalability of spring parameters in distraction enterogenesis in a murine model. Journal of Surgical Research. 2017; 215:219-224. doi:10.1016/j.jss.2017.04.009