Emerging Value-Based Radiology in the Era of Artificial Intelligence

Main Article Content

Seong K. Mun, PhD Shih-Chung B. Lo, PhD Kenneth Wong, PhD Dow-Mu Koh, MD Fred Prior, PhD

Abstract

Radiology has a long history of adopting state-of-the-art digital technology to provide better diagnostic services and facilitate advances in image-based therapeutics throughout the healthcare system. The radiology community has been developing diagnostic artificial intelligence (AI) tools over the past 20 years, long before AI became fashionable in the public press. Currently, there are approximately four hundred Food and Drug Administration approved imaging AI products. However, the clinical adoption of these products in radiology has been relatively dismal, indicating that the current technology-push model needs to evolve into the demand-pull model. We will review the current state of AI use in radiology from the perspective of clinical adoption and explore the ways in which AI products will become an ensemble of critically important tools to help radiology transition from volume-based service to value-based healthcare. This transition will create new demands for AI technologies. We contrast the current “technology-push” model with a “demand-pull” model that will aligns technology with user priorities.


We summarize the lessons learned from AI experience over the past twenty years, mainly working with computer-aided detection for breast cancers and lung cancers. The radiology community calls for AI tools that can do more than detection with increasing attention toward higher workflow efficiency and higher productivity of radiologists. Major radiological societies of North America and Europe promulgated the emerging concept of value-based radiology service, an integral part of overall value-based healthcare. The transition to value-based radiology will happen and that higher value will come from the effective use of AI throughout the radiology workflow.


The value-based radiology will need to work with a full range of machine learning tools, including supervised, unsupervised, and reinforcement learning, as well as natural language processing and large language models (e.g., chatbots). The engineering community is rapidly developing many concepts and sophisticated software tools for data orchestration, AI orchestration, and automation orchestration. Current radiology operation has been supported by PACS, a monolithic IT infrastructure of past generations. This system will need to migrate to an intelligence management system to support the new workflow needed for high value radiology. 

Article Details

How to Cite
MUN, Seong K. et al. Emerging Value-Based Radiology in the Era of Artificial Intelligence. Medical Research Archives, [S.l.], v. 11, n. 5, may 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3915>. Date accessed: 06 jan. 2025. doi: https://doi.org/10.18103/mra.v11i5.3915.
Section
Research Articles

References

1. Lehr JL, Lodwick GS, Nicholson BF, Birznieks FB. Experience with MARS (Missouri Automated Radiology System). Radiology. 1973;106(2):289-94. https://doi.org/10.1148/106.2.289.
2. Mun SK, Freedman M, Kapur R. Image management and communications for radiology. IEEE Engineering in Medicine and Biology Magazine. 1993;12(1):70–80. doi:10.1109/51.195943.
3. Mun SK, Prior F, Caramella D, Ratib O. Introduction to the special section on image management in the healthcare enterprise. IEEE Trans. Inf. Technol. Biomed. 2007;11 (1):1–6. doi:10.1109/titb.2006.888236.
4. Mun SK, Levine B, Cleary K, Dai H. Deployable teleradiology and telemedicine for the US military. Comput. Methods Programs Biomed. 1998;57 (1–2):21–27. doi:10.1016/s0169-2607(98)00040-6.
5. Lo SCB, Chan HP, Lin JS, Li Huai, Freedman M, Mun SK. Artificial convolution neural network for medical image pattern recognition. Neural Networks. 1995;8 (7–8):1201–1214. doi:10.1016/0893-6080(95)00061-5.
6. Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31(4-5):198-211. doi:10.1016/j.compmedimag.2007.02.002.
7. Giger ML, Chan HP, Boone J. Anniversary paper: History and status of CAD and quantitative image analysis: The role of medical physics and AAPM. Medical Physics. 2008;35(12):5799-5820. doi:10.1118/1.3013555.
8. Gold LS, Klein G, Carr L, Kessler L, Sullivan SD. The emergence of diagnostic imaging technologies in breast cancer: discovery, regulatory approval, reimbursement, and adoption in clinical guidelines. Cancer Imaging. 2012;12(1):13-24. doi:10.1102/1470-7330.2012.0003.
9. Smetherman D, Golding L, Moy L, Rubin E. The economic impact of AI on breast imaging. Journal of Breast Imaging. 2022;4(3):302-308. doi:10.1093/jbi/wbac012.
10. Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tostesonm AN, Miglioretti DL, et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Internal Medicine. 2015;175 (11):1828–1837. doi:10.1001/jamainternmed.2015.5231.
11. Fenton JJ, Taplin SH, Carney PA, et al. Influence of computer-aided detection on performance of screening mammography. N Engl J Med. 2007;356(14):1399-1409. doi:10.1056/NEJMoa066099.
12. Gilbert FJ, Astley SM, Gillan MG, et al. Single reading with computer-aided detection for screening mammography. N Engl J Med. 2008;359(16):1675-1684. doi:10.1056/NEJMoa0803545.
13. Grenier PA, Brun AL, Mellot F. The Potential Role of Artificial Intelligence in Lung Cancer Screening Using Low-Dose Computed Tomography. Diagnostics. 2022; 12(10):2435. https://doi.org/10.3390/diagnostics12102435.
14. Lo SB, Freedman MT, Gillis LB, White CS, Mun SK. JOURNAL CLUB: Computer-Aided Detection of Lung Nodules on CT With a Computerized Pulmonary Vessel Suppressed Function. American Journal of Roentgenology. 2018;210(3):480-488. doi: 10.2214/ajr.17.18718.
15. Liu JA, Yang IY, Tsai EB. Artificial Intelligence (AI) for Lung Nodules, From the AJR Special Series on AI Applications. American Journal of Roentgenology. 2022;219(5):703-712. doi: 10.2214/ajr.22.27487.
16. Oakden-Rayner L. The Rebirth of CAD: How Is Modern AI Different from the CAD We Know?. Radiol Artif Intell. 2019;1(3):e180089. doi:10.1148/ryai.2019180089.
17. Adler-Milstein J, Aggarwal N, Ahmed M, et al. Meeting the Moment: Addressing Barriers and Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis. NAM Perspect. 2022;2022:10.31478/202209c. doi:10.31478/202209c.
18. Hötte K. Demand-Pull, technology-push, and the direction of technological change. Research Policy. 2023;52(5). https://doi.org/10.1016/j.respol.2023.104740.
19. Shaw J, Agarwal P, Desveaux L, et al. Beyond "implementation": digital health innovation and service design. NPJ Digit Med. 2018;1:48. doi:10.1038/s41746-018-0059-8.
20. Romanowski R. (2019). Managing Economic Innovations – Ideas and Institutions. The Nature of Innovation Management. Bogucki Wydawnictwo Naukowe. 2019. doi: 10.12657/9788379862764-1.
21. Brady AP. Value-Based Radiology: A New Focus to Optimise Impact. EMJ Radiology. 2022. doi:10.33590/emjradiol/22-00090.
22. Brink JA, Hricak H. Radiology 2040. Radiology. 2023;306(1):69-72. doi:10.1148/radiol.222594.
23. Brady AP, Bello JA, Derchi LE, et al. Radiology in the Era of Value-based Healthcare: A Multi-Society Expert Statement from the ACR, CAR, ESR, IS3R, RANZCR, and RSNA. Radiology. 2021;298(3):486-491. doi:10.1148/radiol.2020209027.
24. Pettigrew R, Cavanagh R, Sheehan J, Cheetham M. Advancing high-value imaging to support patient care and research. Advancing High-Value Imaging to Support Patient Care and Research.https://obamawhitehouse.archives.gov/blog/2016/12/22/advancing-high-value-imaging-support-patient-care-and-research. Published December 22, 2016. Accessed April 10, 2023.
25. Imaging 3.0: American College of Radiology. Imaging 3.0. https://www.acr.org/Practice-Management-Quality-Informatics/Imaging-3. Accessed April 4, 2023.
26. National Academies of Sciences, Engineering, and Medicine; National Academy of Medicine; Committee on Systems Approaches to Improve Patient Care by Supporting Clinician Well-Being. Taking Action Against Clinician Burnout: A Systems Approach to Professional Well-Being. Washington (DC): National Academies Press (US); October 23, 2019. doi:10.17226/25521.
27. van Leeuwen KG, de Rooij M, Schalekamp S, van Ginneken B, Rutten MJCM. How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr Radiol. 2022;52(11):2087-2093. doi:10.1007/s00247-021-05114-8.
28. Letourneau-Guillon L, Camirand D, Guilbert F, Forghani R. Artificial Intelligence Applications for Workflow, Process Optimization and Predictive Analytics. Neuroimaging Clin N Am. 2020;30(4):e1-e15. doi:10.1016/j.nic.2020.08.008.
29. Pierre K, Haneberg AG, Kwak S, et al. Applications of artificial intelligence in the radiology roundtrip: Process Streamlining, workflow optimization, and beyond. Seminars in Roentgenology. 2023. doi:10.1053/j.ro.2023.02.003.
30. Lo SB, Freedman MT, Mun SK. Transformationally Identical and Invariant Convolutional Neural Networks by Combining Symmetric Operations or Input Vectors. arXiv preprint. 2018. arXiv:1807.11156.
31. Zanfardino M, Franzese M, Pane K, et al. Bringing radiomics into a multi-omics framework for a comprehensive genotype–phenotype characterization of oncological diseases. Journal of Translational Medicine. 2019;17(1). doi:10.1186/s12967-019-2073-2.
32. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-762. doi:10.1038/nrclinonc.2017.141.
33. Chen X, Xie H, Wang FL, Liu Z, Xu J, Hao T. A bibliometric analysis of natural language processing in medical research. BMC Med Inform Decis Mak. 2018;18(Suppl 1):14. doi:10.1186/s12911-018-0594-x.
34. Hao T, Rusanov A, Boland MR, Weng C. Clustering clinical trials with similar eligibility criteria features. J Biomed Inform. 2014;52:112-120. doi:10.1016/j.jbi.2014.01.009.
35. Vaswani A, Shazeer N, Parmar N, Uzkoreit, Jones L, Gomez A, Kaiser L, Polosukhin. Attention is you all need. arXiv. 2017. https://arxiv.org/abs/1706.03762.
36. Schick T, Dwivedi-Yu J, Dessì R, Raileanu R, Lombeli M, Zettlemoyer L, Cancedda N, Scialom T. Toolformer: Language Models Can Teach Themselves to Use Tools. arXiv. 2023. https://arxiv.org/abs/2302.04761.
37. Floris S, Alla S. Orchestration for data, machine learning and infrastructure. Union.ai. https://www.union.ai/blog-post/orchestration-for-data-machine-learning-and-infrastructure. Published November 11, 2022. Accessed April 6, 2023.
38. Linthicum D. The rise of AI Orchestration. eWEEK. https://www.eweek.com/big-data-and-analytics/ai-orchestration/. Published January 17, 2023. Accessed April 6, 2023.
39. Center for Devices and Radiological Health. CDRH Draft Guidance on change control plans for AI/ML-enabled devices. U.S. Food and Drug Administration. https://www.fda.gov/medical-devices/medical-devices-news-and-events/cdrh-issues-draft-guidance-predetermined-change-control-plans-artificial-intelligencemachine. Published March 30, 2023. Accessed April 6, 2023.
40. Cohen RY, Sodickson AD. An Orchestration Platform that Puts Radiologists in the Driver's Seat of AI Innovation: a Methodological Approach. J Digit Imaging. 2023;36(2):700-714. doi:10.1007/s10278-022-00649-0.
41. Juluru K, Shih HH, Keshava Murthy KN, et al. Integrating Al Algorithms into the Clinical Workflow. Radiol Artif Intell. 2021;3(6):e210013. doi:10.1148/ryai.2021210013.
42. Reyna MA, Nsoesie EO, Clifford GD. Rethinking Algorithm Performance Metrics for Artificial Intelligence in Diagnostic Medicine. JAMA. 2022;328(4):329-330. doi:10.1001/jama.2022.10561.
43. Koh DM, Papanikolaou N, Bick U, et al. Artificial intelligence and machine learning in cancer imaging. Commun Med (Lond). 2022;2:133. doi:10.1038/s43856-022-00199-0.