Different Crop Rotations and Residue Levels as They Affect Corn Grain, Residue Production, and Nutrient Concentration

Main Article Content

Juan Hirzel Pablo Undurraga Iván Matus Pascal Michelow

Abstract

The consumption of corn-based foods is a good alternative for human health due to their high content of proteins, essential amino acids and polyunsaturated fatty acids of the omega-3 family. The present study evaluated the effect of two medium-term canola (Brassica napus L.)-corn (Zea mays L.) and bean (Phaseolus vulgaris L.)-corn rotations with four residue incorporation rates (0%, 50%, 100% and 200% of the preceding crop) on corn grain yield, residue production, nutrient concentration and extraction after two rotation cycles in a volcanic soil of south-central Chile. Results indicated that grain yield ranged from 17.04 to 17.40 Mg ha -1 , and residue production ranged from 16.41 to 16.50 Mg ha -1 , being unaffected by the preceding crop. Residue incorporation rates had no effect on grain yield and residue production. The preceding crop affected the concentration and extraction of some nutrients in grain and residue. Residue rate affected the concentration and extraction of some nutrients in grain only. Ca distribution in corn grain was negatively affected by the preceding bean crop and increased residue incorporation rate. Nutrient concentration in grain ranged from 1.33 to 1.36% for N, 0.33% for P, 0.53 to 0.54% for K, 0.008 to 0.011% for Ca, 0.14% for Mg, and 0.087 to 0.092% for S. The ranking of total macronutrient extraction in the corn crop was K > N > Ca > P > Mg > S. The extraction means ranged from 320.0 to 325.8, 56.0 to 57.1, 364.7 to 373.7, 86.5 to 99.3, 39.4 to 42.4, and 22.6 to 23. 7 kg ha -1 , while grain nutrient partitioning coefficients ranged from 64.5 to 66.8, 90.1 to 90.9, 23.1 to 23.7, 1.3 to 2.0, 50.8 to 57.5, and 60.3 to 60.6 for N, P, K, Ca, Mg, and S, respectively. The use of bean as a previous crop allowed an increase in grain protein content (8.56 vs. 8.30%) with respect to the canola crop.

Article Details

How to Cite
HIRZEL, Juan et al. Different Crop Rotations and Residue Levels as They Affect Corn Grain, Residue Production, and Nutrient Concentration. Medical Research Archives, [S.l.], v. 11, n. 6, june 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3923>. Date accessed: 23 nov. 2024. doi: https://doi.org/10.18103/mra.v11i6.3923.
Section
Research Articles

References

1. Oas S, Adams K. The Nutritional Content of Five Southwestern US Indigenous Corn (Zea mays L.) Landraces of Varying Endosperm Type. 2022 https://doi.org/10.1017/aaq.2021.131 Published online by Cambridge University Press.
2. 35. Statista. https://es.statista.com/estadisticas/1130624/superficie-maiz-cultivada-en-el-mundo/ consultado el 19 de enero de 2021.
3. ODEPA. Boletín del maíz. In Merino T, García A (eds.). 2016;20 p. Available at https://www.odepa.gob.cl/wp-content/uploads/2016/08/Boletinmaiz201607-1.pdf
4. Wingeyer AB, Walters DT, Drijber RA, Olk DC, Arkebauer TJ, Verma SB. Fall conservation deep tillage stabilizes corn residues into soil organic matter. Soil Sci. Soc. Am. J. 2012;76:2154-2163. Doi:10.2136/sssaj2012.0121
5. Hirzel J, Matus I, Novoa F, Walter I. Effect of poultry litter on silage corn (Zea mays L.) production and nutrient uptake. Spain J. Agric. Res. 2007;5:102-109.
6. . Hirzel J, Undurraga P, León L, Panichini M, González J, Carrasco J, Matus I. Corn grain production, plant nutrient concentration and soil chemical properties in response to different residue levels from two previous crops. Acta Agric. Scandinavica. 2020. DOI: 10.1080/09064710.2020.1725619.
7. Sommer R, Wall PC, Govaerts B. Model-based assesment of corn cropping under conventional and conservation agricultura in Highland Mexico. Soil Till. Res. 2007;94:83-100.
8. Kumar M, Kundu DK, Ghorai AK, Mitra S, Singh SR. Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in Inceptisols of Eastern Indo-Gangetic Plain. Soil Till. Res. 2018;178:108-117.
9. Sfez S, De.Meester S, Dewulf J. Co-digestion of rice straw and cow dung to supply cooking fuel and fertilizers in rural India: Impact on human health, resource flows and climate change. Sci. Total Environ. 2017;609:1600-1615.
10. Basir A, Jan MT, Alam M, Shah AS, Afridi K, Adnan M, Ali K, Mian IA. Impacts of tillage, stubble management, and nitrogen on wheat production and soil properties. Can. J. Soil Sci. 2016;97:133-140.
11. Stewart C, Roosendaal D, Manter D, Delgado J, Del Grosso S. Interactions of stover and nitrogen management on soil microbial community and labile carbon under irrigated no-till corn. Soil Sci. Soc. Am. J. 2018;82:323-331.
12. Urra J, Mijangos I, Lanzén A, Lloveras J, Garbisu C. Effects of corn stover management on soil quality. Europ. J. Soil Biol. 2018;88:57-64.
13. Limon-Ortega A, Govaerts B, Sayre KD. Straw management, crop rotation, and nitrogen source effect on wheat grain yield and nitrogen use efficiency. Eur. J. Agron. 2008;29:21-28.
14. Kazemeini SA, Bahrani MJ, Pirasteh-Anosheh H, Mehdi SM. Corn growth and yield as affected by wheat residues and irrigation management in a no-tillage system. Archives Agron. Soil Sci. 2014;60:1543-1552.
15. Pandiaraj T, Selvaraj S, Ramu N. Effects of crop residue management and nitrogen fertilizer on soil nitrogen and carbon content and productivity of wheat (Tritucum aestivum L.) in two cropping systems. J. Agr. Sci. Tech. 2015;17:249-260.
16. Chen X, Mao A, Zhang Y, Zhang L, Chang J, Gao H, Thompson ML. Carbon and nitrogen forms in soil organic matter influenced by incorporated wheat and corn residues. Soil Sci. Plant Nut. 2017;63:377-387.
17. Zhang L, Wang J, Fu G, Zhao Y. Rotary tillage in rotation with plowing tillage improves soil properties and crop yield in a wheat-corn cropping system. PLOS ONE 2018;13(6):e0198193. https://doi.org/10.1371/journal.pone.0198193.
18. Zhao HL, Jiang YH, Ning P, Liu JF, Zheng W, Tian X, Shi J, Xu M, Liang Z, Sharand AG. Effect of different straw return modes on soil bacterial community, enzyme activities and organic carbon fractions. Soil Sci. Soc. Am. J. 2019;83:638-648. doi:10.2136/sssaj2018.03.0101.
19. Govaerts B, Sayre KD, Deckers J. Stable high yields with zero tillage and permanent bed planting? Field Crops Res. 2005;94:33-42.
20. Hirzel J, Retamal-Salgado J, Walter I, Matus I. Residual effect of cadmium applications in different crop rotations and environments on durum wheat cadmium accumulation. J. Soil Water Conservation 2019;74:42-51.
21. Chen Z, Wang Q, Wang H, Bao L, Zhou L. Crop yields and soil organic carbon fractions as influenced by straw incorporation in a rice-wheat cropping system in southeastern China. Nutr. Cycl. Agroecosyst. 2018;112:61-73.
22. Swanepoel PA, le Roux PJG, Agenbag GA, Strauss JA, MacLaren C. Seed-drill opener type and crop residue load affect canola establishment, but only residue load affects yield. Agron J. 2019;111:1658-1665 doi:10.2134/agronj2018.10.0695.
23. United States Department of Agriculture (USDA). Keys to soil taxonomy (12th ed.) Washington D.C.: USDA. 2014.
24. Sadzawka A, Carrasco MA, Demanet R, Flores H, Grez R, Mora ML. Métodos de análisis de tejidos vegetales. Serie Actas INIA Nº40. 2007;140 p. 2ª ed. Instituto de Investigaciones Agropecuarias (INIA), Santiago, Chile.
25. SAS Institute. Usage and reference. Version 6. 1989;501 p. Cary, NC: SAS Institute.
26. Retamal-Salgado J, Hirzel J, Walter I, Matus I. Bioabsorption and bioaccumulation of cadmium in the straw and grain of corn (Zea mays L.) in growing soils contaminated with cadmium in different environment. Int. J. Environ. Res. Public. Health 2017;14:1399. doi:10.3390/ijerph14111399.
27. Lawrence PA, Radford BJ, Thomas GA, Sinclair DP, Key AJ. Effects of tillage practices on wheat performance in a semi-arid environment. Soil Till. Res. 1994;28:347-364.
28. Woli KP, Sawyer JE, Boyer MJ, Abendroth LJ, Elmore RW. Corn era hybrid macronutrient and dry matter accumulation in plant components. Agron. J. 2018;110:1648-1658. DOI:10.2134/agronj2018.01.0025
29. Overmann AR, Scholtz RV. Accumulation of biomass and mineral elements with calendar time by corn: application of the expanded growth model. PLOS ONE 2011;6:e28515. DOI:10.1371/journal.pone.0028515.t001.
30. Hirzel J. Fertilización de cultivos en Chile segunda edición aumentada y corregida. Libro INIA N°44, 2021;568 p. Instituto de Investigaciones Agropecuarias. Chillán. Chile.
31. Sallaku G, Liko J, Rada Z, Balliu A. The effects of legume crops (pea and faba bean) on soil nutrients availability and yield parameters of subsequent cabbage crops under organic production conditions. J. Environ. Sci. Engineering. 2016;5:619-625.
32. Plaza-Bonilla D, Nogué-Serra I, Raffaillac D, Cantero-Martínez C, Justes É. Carbon footprint of cropping systems with grain legumes and cover crops: A case-study in SW France. Agric. System 2018;167:92-102.
33. Truong THH, Marschner P. Amendment with high and low C/N residues- Influence of rate, order and frequency. J. Soil Sci. Plant Nut. 2018;18:705-720.
34. McDaniel MD, Grandy AS, Tiemann LK, Weintrau MN. Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biol. Biochem. 2014;78:243-254.
35. Neall VE. Volcanic soils. Encyclopedia of Life Support Systems (EOLSS). Land use and land cover VII: 2006;1-24. Available at http://www.eolss.net/ebooks/Sample%20Chapters/C19/E1-05-07-13.pdf
(accessed January 2021)
36. Echeverría HE, Sainz Rozas H, Barbieri PA. Maíz y Sorgo. 2014; Pág. 435-478. In: Fertilidad de Suelos y Fertilización de Cultivos. Segunda Edición. Echeverría HE, Garcia FO(eds). 904 p. Ediciones INTA.
37. Melo C, Fialho C, Faria A, Neto M, Saraiva D, Costa M, Ferreira L, Ferreira FA. Microbial activity of soil cultivated with corn in association with weeds under different fertility management systems. Chilean J. Agric. Res. 2014;74:477-484.
38. Kerdraon L, Balesdent M, Barret M, Laval V, Suffert F. Crop residues in 438 wheat-oilseed rape rotation system: a pivotal, shifting platform for microbial 439 meetings. Microbial Ecol. 2019;77:931-945.
39. Baldock JA. Influence of Calcium on the decomposition of organic material in soils. Thesis submitted for the degree of Doctor of Philosophy. Department of Soil Science. The Waite Agricultural Research Institute. The University of Adelaide. 1989;142 p.
40. Bell JM. Factors affecting the nutritional value of canola meal: A review. Can. J. Anim. Sci. 1993;73:679-697.
41. Heard J, Hay D. Nutrient content, uptake pattern and carbon:nitrogen ratios of prairie crops. Manitoba Agriculture, Food and Rural Initiatives, Carman, Canada. 2006.
42. Németh T, Máthé-Gáspár G, Radimszky L, Gyiri Z. Effect of nitrogen fertilizer on the nitrogen, sulphur and carbon contents of canola (Brassica napus L.) grown on a calcareous Chernozem soil. Cereal Res. Com. 2007;837-840. doi:10.1556/CRC.35.2007.2.168.
43. Akond GM, Khandaker L, Berthold J, Gates L, Peters K, Delong H, Hossain K. Anthocyanin, total polyphenols and antioxidant activity of common bean. Am. J. Food Tech. 2011;6:385-394. DOI: 10.3923/ajft.2011.385.394.
44. Marschner P (ed.). Marschner’s Mineral nutrition of higher plants. 3rd ed. Academic Press, London, UK. 2012;651 p.
45. Ahmed A, Aftab S, Hussain S, Nazir Cheema H, Liu W, Yang F, Yang W. Nutrient Accumulation and Distribution Assessment in Response to Potassium Application under Corn–Soybean Intercropping System. Agron. 2020;10:725. DOI:10.3390/agronomy10050725.