Histologic comparison of three different alloplastic bone graft substitutes – a split-mouth study.
Main Article Content
Abstract
Objective: To histologically compare three different alloplasts and assess bone regeneration
Study Design: Bone core of three different bone grafts was procured from a grafted site after a period of 6 months and implants were placed. The bone cores were studied histologically at higher magnification and bone formation was analyzed.
Results: All the grafts showed good results clinically, however histologically β -TCP had shown better results and more bone formation as compared to others.
Conclusion: Chronologically, Powerbone® shows the maximum formation of mature bone followed by Adbone® and then Novabone®
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
DOI.org/10.1016/S0011-8532(22)02107-3.
2. Fischer J, Kolk A, Wolfart S, Pautke C, Warnke PH, Plank C. Future of local bone regeneration – Protein versus gene therapy. J Craniomaxillofac Surg. 2011;39(1):54–64. doi: 10.1016/j.jcms.2010.03.016.
3. Naujoks C, Langenbach F, Berr K, Depprich R, Kubler N, Meyer U et al. Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. J Biomater Appl. 2011;25(5):497–512. doi: 10.1177/0885328209358631.
4. Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA. A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev. 2010; 16(5):493–507. doi: 10.1089/ten.TEB.2010.0035.
5. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012; 40(5):363-408. doi: 10.1615/critrevbiomedeng.v40.i5.10.
6. Sanchez AR, Sheridan PJ, Kupp LI. Is platelet rich plasma perfect enhancement factor? A current review. Int J Oral Maxillofac Implants. 2003;18(1):93-103.
7. Dumitrescu AL. Bone Grafts and Bone Graft Substitutes in, Dumitrescu AL, in Chemicals in surgical periodontal therapy, 1st edition, Berlin Heidelberg, Springer-Verlag, 2011 Pp 73-144. DOI: 10.1007/978-3-642-18225-9_2
8. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL. Regeneration of periodontal tissue: Bone replacement grafts. Dent Clin North Am. 2010;54(1):55–71. Doi.org/1001016/j.cden.2009.09.003
9. Mahesh L, Guirado JLC, Shukla S, Kumar VR, Kumar YR. Clinical and radiographic findings without the use of bone substitute materials in extraction sockets and delayed implant placement- A case series. J Oral Bio Craniofax Res. 2020;10(2):141-45. doi: 10.1016/j.jobcr.2020.03.011.
10. Shukla S, Chug A, Mahesh L, Grover HS. Effect of addition of Platelet Rich Plasma to Calcium Phosphosilicate Putty on healing at 9 months in periodontal intrabony defects. J Contemp Dent Prac. 2016;17(3):1-5. doi: 10.5005/jp-journals-10024-1832.
11. Andre M. Imaging methods in periodontology. Periodontol 2000. 2004; 34:34-38. doi: 10.1046/j.0906-6713.2003.003423.x.
12. Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histological study of bony ingrowth and implant substitution. Clin Orthop Relat Res. 1988;232:127-138.
13. Shimazaki K, Mooney V. comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitutes. J Orthop Res. 1985;3(3):301-310. doi: 10.1002/jor.1100030306.
14. Chung H, Kim S, Chung SH. Clinical Outcome of Beta-Tricalcium Phosphate Use for Bone Defects after Operative Treatment of Benign Tumors Clin Orthopedic Surg. 2019; 11(2):233-236. doi: 10.4055/cios.2019.11.2.233.
15. Kokubo T, Takadama H. How useful is SBF in predicting in-vivo bone bioactivity? Biomaterial. 2006;27(15);2907-2915. doi.org/10.1016/j.biomateruals.2006.01.017
16. Ohtsuki C, Kokubo T, Neo M, Kotani S, Yamamuro T, Nakakura T et al. Bone bonding mechanism of sintered β-3CaP-P2O5. Phosphorus Res Bull. 1991;1:191-196.
17. Neo M, Kotani S, Fujita Y, Nakakura T, Yamamuro T, Bando Y et al. Difference in ceramin-bone interface between surface-active ceramics and resorbable ceramics- a study by scanning and transmission electron microscopy. J biomed Mater Res. 1992; 26(2):255-267. doi: 10.1002/jbm.820260210.
18. Kitsugi T, Yamamuro T, Nakakura T, Kotani S, Kokubo T, Takeuchi H. Four calcium phosphate ceramics as bone substitutes for non-weight-bearing. Biomaterial. 1993;14(3): 216-224. DOI: 10.1016/0142-9612(93)90026-x
19. Bohner M, Baroud G, Bernstein A, Döbelin N, Galea L, Hesse B et al. Characterization and distribution of mechanically competent mineralized tissue in micropores of β-tricalcium phosphate bone substitutes. Mat Today. 2017;20(3)106-115. DOI.org/10.1016/j.mattod.2017.02.002
20. Le Huec JC, Clément D, Brouillaud B, Barthe N, Dupuy B, Foliguet B et al. Evolution of the local calcium content around irradiated β-tricalcium phosphate ceramic implants: in vivo study in the rabbit. Biomaterrial. 1998; 19(7-9)733-738. DOI: 10.1016/s0142-9612(97)00189-0.
21. Obata A, Fujimoto T, Kasuga T. Enhancement of Bone-Like Apatite Forming Abilities of Calcium Phosphate Ceramics in SBF by Autoclaving. Ceram Soc Jpn 2006; 114:63-66. https://doi.org/10.4028/www.scientific.net/KEM.309-311.247.
22. Altermatt S, Schwöbel M, Pochon JP. Operative Treatment of Solitary Bone Cysts with Tricalcium Phosphate Ceramic. A 1 to 7 Year Follow-Up. Eur J Pediatr Surg. 1992; 2(3):180-182. DOI: 10.1055/s-2008-1063435
23. Wang Z, Sakakibara T, Sudo A, Kasai Y. Porosity of β-TCP affects the results of lumbar posterolateral fusion. J Spinal Disord Tech. 2013;26(2):E40-45. DOI:10.2139/ssrn.3600188
24. Hulbert SF, Young FA, Mathews RS, Klawitt JJ, Talbert CD, Sterling FH. Potential of ceramic materials as permanently implantable skeletal prosthesis. J Biomed Mater Res. 1970;4(3)433-456. DOI: 10.1002/jbm.820040309.
25. Mahesh L, Calvo-Guirado JL, Shukla S, Jain A. Histological study to compare the appropriate particle size of Beta TCP for socket preservation. Int J Sci Res. 2023;12(2)1-4. DOI:10.36106/ijsr/3503764