Histologic comparison of three different alloplastic bone graft substitutes – a split-mouth study.

Main Article Content

Praful Bali, MDS Lanka Mahesh, BDS, MBA Sagrika Shukla, MDS Anshi Jain, MDS

Abstract

Objective: To histologically compare three different alloplasts and assess bone regeneration


 


Study Design: Bone core of three different bone grafts was procured from a grafted site after a period of 6 months and implants were placed. The bone cores were studied histologically at higher magnification and bone formation was analyzed.


 


Results: All the grafts showed good results clinically, however histologically β -TCP had shown better results and more bone formation as compared to others.


 


Conclusion: Chronologically, Powerbone® shows the maximum formation of mature bone followed by Adbone® and then Novabone®

Keywords: Bone graft, bone regeneration, Alloplasts, synthetic bone

Article Details

How to Cite
BALI, Praful et al. Histologic comparison of three different alloplastic bone graft substitutes – a split-mouth study.. Medical Research Archives, [S.l.], v. 11, n. 5, may 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3925>. Date accessed: 06 jan. 2025. doi: https://doi.org/10.18103/mra.v11i5.3925.
Section
Research Articles

References

1. Tatum H jr. Maxillary and sinus implant reconstruction. Dent Clin N Am. 1986;30(2):207-229.
DOI.org/10.1016/S0011-8532(22)02107-3.

2. Fischer J, Kolk A, Wolfart S, Pautke C, Warnke PH, Plank C. Future of local bone regeneration – Protein versus gene therapy. J Craniomaxillofac Surg. 2011;39(1):54–64. doi: 10.1016/j.jcms.2010.03.016.

3. Naujoks C, Langenbach F, Berr K, Depprich R, Kubler N, Meyer U et al. Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. J Biomater Appl. 2011;25(5):497–512. doi: 10.1177/0885328209358631.

4. Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA. A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev. 2010; 16(5):493–507. doi: 10.1089/ten.TEB.2010.0035.

5. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012; 40(5):363-408. doi: 10.1615/critrevbiomedeng.v40.i5.10.

6. Sanchez AR, Sheridan PJ, Kupp LI. Is platelet rich plasma perfect enhancement factor? A current review. Int J Oral Maxillofac Implants. 2003;18(1):93-103.

7. Dumitrescu AL. Bone Grafts and Bone Graft Substitutes in, Dumitrescu AL, in Chemicals in surgical periodontal therapy, 1st edition, Berlin Heidelberg, Springer-Verlag, 2011 Pp 73-144. DOI: 10.1007/978-3-642-18225-9_2

8. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL. Regeneration of periodontal tissue: Bone replacement grafts. Dent Clin North Am. 2010;54(1):55–71. Doi.org/1001016/j.cden.2009.09.003

9. Mahesh L, Guirado JLC, Shukla S, Kumar VR, Kumar YR. Clinical and radiographic findings without the use of bone substitute materials in extraction sockets and delayed implant placement- A case series. J Oral Bio Craniofax Res. 2020;10(2):141-45. doi: 10.1016/j.jobcr.2020.03.011.

10. Shukla S, Chug A, Mahesh L, Grover HS. Effect of addition of Platelet Rich Plasma to Calcium Phosphosilicate Putty on healing at 9 months in periodontal intrabony defects. J Contemp Dent Prac. 2016;17(3):1-5. doi: 10.5005/jp-journals-10024-1832.

11. Andre M. Imaging methods in periodontology. Periodontol 2000. 2004; 34:34-38. doi: 10.1046/j.0906-6713.2003.003423.x.

12. Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histological study of bony ingrowth and implant substitution. Clin Orthop Relat Res. 1988;232:127-138.

13. Shimazaki K, Mooney V. comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitutes. J Orthop Res. 1985;3(3):301-310. doi: 10.1002/jor.1100030306.

14. Chung H, Kim S, Chung SH. Clinical Outcome of Beta-Tricalcium Phosphate Use for Bone Defects after Operative Treatment of Benign Tumors Clin Orthopedic Surg. 2019; 11(2):233-236. doi: 10.4055/cios.2019.11.2.233.

15. Kokubo T, Takadama H. How useful is SBF in predicting in-vivo bone bioactivity? Biomaterial. 2006;27(15);2907-2915. doi.org/10.1016/j.biomateruals.2006.01.017

16. Ohtsuki C, Kokubo T, Neo M, Kotani S, Yamamuro T, Nakakura T et al. Bone bonding mechanism of sintered β-3CaP-P2O5. Phosphorus Res Bull. 1991;1:191-196.

17. Neo M, Kotani S, Fujita Y, Nakakura T, Yamamuro T, Bando Y et al. Difference in ceramin-bone interface between surface-active ceramics and resorbable ceramics- a study by scanning and transmission electron microscopy. J biomed Mater Res. 1992; 26(2):255-267. doi: 10.1002/jbm.820260210.

18. Kitsugi T, Yamamuro T, Nakakura T, Kotani S, Kokubo T, Takeuchi H. Four calcium phosphate ceramics as bone substitutes for non-weight-bearing. Biomaterial. 1993;14(3): 216-224. DOI: 10.1016/0142-9612(93)90026-x

19. Bohner M, Baroud G, Bernstein A, Döbelin N, Galea L, Hesse B et al. Characterization and distribution of mechanically competent mineralized tissue in micropores of β-tricalcium phosphate bone substitutes. Mat Today. 2017;20(3)106-115. DOI.org/10.1016/j.mattod.2017.02.002

20. Le Huec JC, Clément D, Brouillaud B, Barthe N, Dupuy B, Foliguet B et al. Evolution of the local calcium content around irradiated β-tricalcium phosphate ceramic implants: in vivo study in the rabbit. Biomaterrial. 1998; 19(7-9)733-738. DOI: 10.1016/s0142-9612(97)00189-0.

21. Obata A, Fujimoto T, Kasuga T. Enhancement of Bone-Like Apatite Forming Abilities of Calcium Phosphate Ceramics in SBF by Autoclaving. Ceram Soc Jpn 2006; 114:63-66. https://doi.org/10.4028/www.scientific.net/KEM.309-311.247.

22. Altermatt S, Schwöbel M, Pochon JP. Operative Treatment of Solitary Bone Cysts with Tricalcium Phosphate Ceramic. A 1 to 7 Year Follow-Up. Eur J Pediatr Surg. 1992; 2(3):180-182. DOI: 10.1055/s-2008-1063435

23. Wang Z, Sakakibara T, Sudo A, Kasai Y. Porosity of β-TCP affects the results of lumbar posterolateral fusion. J Spinal Disord Tech. 2013;26(2):E40-45. DOI:10.2139/ssrn.3600188

24. Hulbert SF, Young FA, Mathews RS, Klawitt JJ, Talbert CD, Sterling FH. Potential of ceramic materials as permanently implantable skeletal prosthesis. J Biomed Mater Res. 1970;4(3)433-456. DOI: 10.1002/jbm.820040309.

25. Mahesh L, Calvo-Guirado JL, Shukla S, Jain A. Histological study to compare the appropriate particle size of Beta TCP for socket preservation. Int J Sci Res. 2023;12(2)1-4. DOI:10.36106/ijsr/3503764