The Glioblastoma Landscape: Hallmarks of Disease, Therapeutic Resistance, and Treatment Opportunities

Main Article Content

Jack Boylan Elizabeth Byers Deborah F. Kelly


Malignant brain tumors are aggressive and difficult to treat. Glioblastoma is the most common and lethal form of primary brain tumor, often found in patients with no genetic predisposition. The median life expectancy for individuals diagnosed with this condition is 6 months to 2 years and there is no known cure. New paradigms in cancer biology implicate a small subset of tumor cells in initiating and sustaining these incurable brain tumors. Here, we discuss the heterogenous nature of glioblastoma and theories behind its capacity for therapy resistance and recurrence. Within the cancer landscape, cancer stem cells are thought to be both tumor initiators and major contributors to tumor heterogeneity and therapy evasion and such cells have been identified in glioblastoma. At the cellular level, disruptions in the delicate balance between differentiation and self-renewal spur transformation and support tumor growth. While rapidly dividing cells are more sensitive to elimination by traditional treatments, glioblastoma stem cells evade these measures through slow division and reversible exit from the cell cycle. At the molecular level, glioblastoma tumor cells exploit several signaling pathways to evade conventional therapies through improved DNA repair mechanisms and a flexible state of senescence. We examine these common evasion techniques while discussing potential molecular approaches to better target these deadly tumors. Equally important, the presented information encourages the idea of augmenting conventional treatments with novel glioblastoma stem cell-directed therapies, as eliminating these harmful progenitors holds great potential to modulate tumor recurrence.

Keywords: Glioblastoma, Glioblastoma stem cells, heterogeneity, therapy resistance, tumor microenvironment, clinical treatments

Article Details

How to Cite
BOYLAN, Jack; BYERS, Elizabeth; KELLY, Deborah F.. The Glioblastoma Landscape: Hallmarks of Disease, Therapeutic Resistance, and Treatment Opportunities. Medical Research Archives, [S.l.], v. 11, n. 6, june 2023. ISSN 2375-1924. Available at: <>. Date accessed: 20 apr. 2024. doi:
Review Articles


1. Rock K, Mcardle O, Forde P, et al. A clinical review of treatment outcomes in glioblastoma multiforme—the validation in a non-trial population of the results of a randomised Phase III clinical trial: has a more radical approach improved survival? Br J Radiol. 2012;85(1017):e729-e733. doi:10.1259/bjr/83796755
2. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev APJCP. 2017;18(1):3-9. doi:10.22034/APJCP.2017.18.1.3
3. Ostrom QT, Gittleman H, Liao P, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007–2011. Neuro-Oncol. 2014;16(suppl_4):iv1-iv63. doi:10.1093/neuonc/nou223
4. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med. 2005;352(10):987-996. doi:10.1056/NEJMoa043330
5. Schapira AHV. Neurology and Clinical Neuroscience E-Book. Elsevier Health Sciences; 2006.
6. Kim J, Lee IH, Cho HJ, et al. Spatiotemporal Evolution of the Primary Glioblastoma Genome. Cancer Cell. 2015;28(3):318-328. doi:10.1016/j.ccell.2015.07.013
7. Weller M, van den Bent M, Hopkins K, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014;15(9):e395-e403. doi:10.1016/S1470-2045(14)70011-7
8. Agarwal S, Mittapalli RK, Zellmer DM, et al. Active Efflux of Dasatinib from the Brain Limits Efficacy against Murine Glioblastoma: Broad Implications for the Clinical Use of Molecularly Targeted Agents. Mol Cancer Ther. 2012;11(10):2183-2192. doi:10.1158/1535-7163.MCT-12-0552
9. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment - ClinicalKey. Accessed April 15, 2023.!/content/playContent/1-s2.0-S1368764615000126?returnurl=null&referrer=null
10. Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol Rev. 2018;70(3):412-445. doi:10.1124/pr.117.014944
11. Della Monica R, Cuomo M, Buonaiuto M, et al. MGMT and Whole-Genome DNA Methylation Impacts on Diagnosis, Prognosis and Therapy of Glioblastoma Multiforme. Int J Mol Sci. 2022;23(13):7148. doi:10.3390/ijms23137148
12. Etcheverry A, Aubry M, de Tayrac M, et al. DNA methylation in glioblastoma: impact on gene expression and clinical outcome. BMC Genomics. 2010;11(1):701. doi:10.1186/1471-2164-11-701
13. Bonavia R, Inda M del M, Cavenee WK, Furnari FB. Heterogeneity Maintenance in Glioblastoma: A Social Network. Cancer Res. 2011;71(12):4055-4060. doi:10.1158/0008-5472.CAN-11-0153
14. Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler HR. Molecular Heterogeneity in Glioblastoma: Potential Clinical Implications. Front Oncol. 2015;5. Accessed April 27, 2023.
15. Heppner GH, Miller BE. Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev. 1983;2(1):5-23. doi:10.1007/BF00046903
16. Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci. 2003;100(7):3547-3549. doi:10.1073/pnas.0830967100
17. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106-110. doi:10.1038/nature05372
18. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-737. doi:10.1038/nm0797-730
19. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124-1134. doi:10.1038/nm.4409
20. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25(1):20. doi:10.1186/s12929-018-0426-4
21. Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234(6):8381-8395. doi:10.1002/jcp.27740
22. Milanovic M, Fan DNY, Belenki D, et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018;553(7686):96-100. doi:10.1038/nature25167
23. McLendon R, Friedman A, Bigner D, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061-1068. doi:10.1038/nature07385
24. Verhaak RGW, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98-110. doi:10.1016/j.ccr.2009.12.020
25. Parsons DW, Jones S, Zhang X, et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science. 2008;321(5897):1807. doi:10.1126/science.1164382
26. Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396-1401. doi:10.1126/science.1254257
27. Brennan CW, Verhaak RGW, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462-477. doi:10.1016/j.cell.2013.09.034
28. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol (Berl). 2016;131(6):803-820. doi:10.1007/s00401-016-1545-1
29. Ohgaki H, Kleihues P. Genetic Pathways to Primary and Secondary Glioblastoma. Am J Pathol. 2007;170(5):1445-1453. doi:10.2353/ajpath.2007.070011
30. Han S, Liu Y, Cai SJ, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer. 2020;122(11):1580-1589. doi:10.1038/s41416-020-0814-x
31. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 Mutations as Molecular Signature and Predictive Factor of Secondary Glioblastomas. Clin Cancer Res. 2009;15(19):6002-6007. doi:10.1158/1078-0432.CCR-09-0715
32. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 Mutations in Gliomas. N Engl J Med. 2009;360(8):765-773. doi:10.1056/NEJMoa0808710
33. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncol. 2021;23(8):1231-1251. doi:10.1093/neuonc/noab106
34. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157-173. doi:10.1016/j.ccr.2006.02.019
35. Sottoriva A, Spiteri I, Piccirillo SGM, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci. 2013;110(10):4009-4014. doi:10.1073/pnas.1219747110
36. Bergmann N, Delbridge C, Gempt J, et al. The Intratumoral Heterogeneity Reflects the Intertumoral Subtypes of Glioblastoma Multiforme: A Regional Immunohistochemistry Analysis. Front Oncol. 2020;10. Accessed February 20, 2023.
37. Swanton C. Intratumor Heterogeneity: Evolution through Space and Time. Cancer Res. 2012;72(19):4875-4882. doi:10.1158/0008-5472.CAN-12-2217
38. Becker AP, Sells BE, Haque SJ, Chakravarti A. Tumor Heterogeneity in Glioblastomas: From Light Microscopy to Molecular Pathology. Cancers. 2021;13(4):761. doi:10.3390/cancers13040761
39. Wang J, Cazzato E, Ladewig E, et al. Clonal evolution of glioblastoma under therapy. Nat Genet. 2016;48(7):768-776. doi:10.1038/ng.3590
40. Fedele M, Cerchia L, Pegoraro S, Sgarra R, Manfioletti G. Proneural-Mesenchymal Transition: Phenotypic Plasticity to Acquire Multitherapy Resistance in Glioblastoma. Int J Mol Sci. 2019;20(11):2746. doi:10.3390/ijms20112746
41. Segerman A, Niklasson M, Haglund C, et al. Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition. Cell Rep. 2016;17(11):2994-3009. doi:10.1016/j.celrep.2016.11.056
42. Nowell PC. The Clonal Evolution of Tumor Cell Populations. Science. 1976;194(4260):23-28. doi:10.1126/science.959840
43. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306-313. doi:10.1038/nature10762
44. Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution. Cell. 2009;138(5):822-829. doi:10.1016/j.cell.2009.08.017
45. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-111. doi:10.1038/35102167
46. Clarke MF, Dick JE, Dirks PB, et al. Cancer Stem Cells—Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells. Cancer Res. 2006;66(19):9339-9344. doi:10.1158/0008-5472.CAN-06-3126
47. Lan X, Jörg DJ, Cavalli FMG, et al. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature. 2017;549(7671):227-232. doi:10.1038/nature23666
48. Jackson M, Hassiotou F, Nowak A. Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis. 2015;36(2):177-185. doi:10.1093/carcin/bgu243
49. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126(4):663-676. doi:10.1016/j.cell.2006.07.024
50. Visvader JE, Lindeman GJ. Cancer Stem Cells: Current Status and Evolving Complexities. Cell Stem Cell. 2012;10(6):717-728. doi:10.1016/j.stem.2012.05.007
51. Schwitalla S, Fingerle AA, Cammareri P, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152(1-2):25-38. doi:10.1016/j.cell.2012.12.012
52. Vermeulen L, De Sousa E Melo F, van der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468-476. doi:10.1038/ncb2048
53. Pradella D, Naro C, Sette C, Ghigna C. EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer. 2017;16(1):8. doi:10.1186/s12943-016-0579-2
54. Wang S sha, Jiang J, Liang X hua, Tang Y ling. Links between cancer stem cells and epithelial– mesenchymal transition. OncoTargets Ther. 2015;8:2973-2980. doi:10.2147/OTT.S91863
55. Kreso A, Dick JE. Evolution of the Cancer Stem Cell Model. Cell Stem Cell. 2014;14(3):275-291. doi:10.1016/j.stem.2014.02.006
56. Wang W, Quan Y, Fu Q, et al. Dynamics between Cancer Cell Subpopulations Reveals a Model Coordinating with Both Hierarchical and Stochastic Concepts. PLOS ONE. 2014;9(1):e84654. doi:10.1371/journal.pone.0084654
57. Dirkse A, Golebiewska A, Buder T, et al. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun. 2019;10(1):1787. doi:10.1038/s41467-019-09853-z
58. van Niekerk G, Davids LM, Hattingh SM, Engelbrecht AM. Cancer stem cells: A product of clonal evolution? Int J Cancer. 2017;140(5):993-999. doi:10.1002/ijc.30448
59. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328-337. doi:10.1038/nature12624
60. Hung KF, Yang T, Kao SY. Cancer stem cell theory: Are we moving past the mist? J Chin Med Assoc. 2019;82(11):814. doi:10.1097/JCMA.0000000000000186
61. Yoo MH, Hatfield DL. The cancer stem cell theory: Is it correct? Mol Cells. 2008;26(5):514-516.
62. Wang J, Sakariassen PØ, Tsinkalovsky O, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer. 2008;122(4):761-768. doi:10.1002/ijc.23130
63. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46. doi:10.1158/2159-8290.CD-21-1059
64. Singh SK, Clarke ID, Terasaki M, et al. Identification of a Cancer Stem Cell in Human Brain Tumors. Cancer Res. 2003;63(18):5821-5828.
65. Brescia P, Richichi C, Pelicci G. Current Strategies for Identification of Glioma Stem Cells: Adequate or Unsatisfactory? J Oncol. 2012;2012:e376894. doi:10.1155/2012/376894
66. Tang X, Zuo C, Fang P, et al. Targeting Glioblastoma Stem Cells: A Review on Biomarkers, Signal Pathways and Targeted Therapy. Front Oncol. 2021;11. Accessed February 20, 2023.
67. Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 2019;33(11-12):591-609. doi:10.1101/gad.324301.119
68. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29(12):1203-1217. doi:10.1101/gad.261982.115
69. Galli R, Binda E, Orfanelli U, et al. Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma. Cancer Res. 2004;64(19):7011-7021. doi:10.1158/0008-5472.CAN-04-1364
70. Soda Y, Marumoto T, Friedmann-Morvinski D, et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci. 2011;108(11):4274-4280. doi:10.1073/pnas.1016030108
71. Scully S, Francescone R, Faibish M, et al. Transdifferentiation of Glioblastoma Stem-Like Cells into Mural Cells Drives Vasculogenic Mimicry in Glioblastomas. J Neurosci. 2012;32(37):12950-12960. doi:10.1523/JNEUROSCI.2017-12.2012
72. Lee JH, Lee JE, Kahng JY, et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature. 2018;560(7717):243-247. doi:10.1038/s41586-018-0389-3
73. Jiang Y, Uhrbom L. On the origin of glioma. Ups J Med Sci. 2012;117(2). doi:10.3109/03009734.2012.658976
74. Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2015;2(2):152-163. doi:10.1016/j.gendis.2015.02.001
75. Olmez I, Shen W, McDonald H, Ozpolat B. Dedifferentiation of patient-derived glioblastoma multiforme cell lines results in a cancer stem cell-like state with mitogen-independent growth. J Cell Mol Med. 2015;19(6):1262-1272. doi:10.1111/jcmm.12479
76. Moon JH, Kwon S, Jun EK, et al. Nanog-induced dedifferentiation of p53-deficient mouse astrocytes into brain cancer stem-like cells. Biochem Biophys Res Commun. 2011;412(1):175-181. doi:10.1016/j.bbrc.2011.07.070
77. Friedmann-Morvinski D, Bushong EA, Ke E, et al. Dedifferentiation of Neurons and Astrocytes by Oncogenes Can Induce Gliomas in Mice. Science. 2012;338(6110):1080-1084. doi:10.1126/science.1226929
78. Rios ÁFL, Tirapelli DP da C, Cirino ML de A, Rodrigues AR, Ramos ES, Carlotti CG Jr. Expression of pluripotency-related genes in human glioblastoma. Neuro-Oncol Adv. 2022;4(1):vdab163. doi:10.1093/noajnl/vdab163
79. Fang X, Yoon JG, Li L, et al. The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics. 2011;12(1):11. doi:10.1186/1471-2164-12-11
80. Kim JB, Sebastiano V, Wu G, et al. Oct4-Induced Pluripotency in Adult Neural Stem Cells. Cell. 2009;136(3):411-419. doi:10.1016/j.cell.2009.01.023
81. Wang ML, Chiou SH, Wu CW. Targeting cancer stem cells: emerging role of Nanog transcription factor. OncoTargets Ther. 2013;6:1207-1220. doi:10.2147/OTT.S38114
82. Lee G, Auffinger B, Guo D, et al. Dedifferentiation of Glioma Cells to Glioma Stem-like Cells By Therapeutic Stress-induced HIF Signaling in the Recurrent GBM Model. Mol Cancer Ther. 2016;15(12):3064-3076. doi:10.1158/1535-7163.MCT-15-0675
83. Dahan P, Martinez Gala J, Delmas C, et al. Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin: possible involvement in radioresistance. Cell Death Dis. 2014;5(11):e1543-e1543. doi:10.1038/cddis.2014.509
84. Auffinger B, Tobias AL, Han Y, et al. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ. 2014;21(7):1119-1131. doi:10.1038/cdd.2014.31
85. Piccirillo SGM, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444(7120):761-765. doi:10.1038/nature05349
86. Carén H, Stricker SH, Bulstrode H, et al. Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest. Stem Cell Rep. 2015;5(5):829-842. doi:10.1016/j.stemcr.2015.09.014
87. Inoue A, Takahashi H, Harada H, et al. Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. Int J Oncol. 2010;37(5):1121-1131. doi:10.3892/ijo_00000764
88. Suvà ML, Rheinbay E, Gillespie SM, et al. Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells. Cell. 2014;157(3):580-594. doi:10.1016/j.cell.2014.02.030
89. Eramo A, Ricci-Vitiani L, Zeuner A, et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 2006;13(7):1238-1241. doi:10.1038/sj.cdd.4401872
90. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-760. doi:10.1038/nature05236
91. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8(7):545-554. doi:10.1038/nrc2419
92. Zeppernick F, Ahmadi R, Campos B, et al. Stem Cell Marker CD133 Affects Clinical Outcome in Glioma Patients. Clin Cancer Res. 2008;14(1):123-129.
93. Chen J, Li Y, Yu TS, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522-526. doi:10.1038/nature11287
94. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5(1):67. doi:10.1186/1476-4598-5-67
95. Couturier CP, Ayyadhury S, Le PU, et al. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat Commun. 2020;11(1):3406. doi:10.1038/s41467-020-17186-5
96. Hambardzumyan D, Bergers G. Glioblastoma: Defining Tumor Niches. Trends Cancer. 2015;1(4):252-265. doi:10.1016/j.trecan.2015.10.009
97. Plaks V, Kong N, Werb Z. The Cancer Stem Cell Niche: How Essential Is the Niche in Regulating Stemness of Tumor Cells? Cell Stem Cell. 2015;16(3):225-238. doi:10.1016/j.stem.2015.02.015
98. WebPathology. Accessed April 29, 2023.
99. Specimen Detail :: Ivy Glioblastoma Atlas Project. Accessed April 29, 2023.
100. Krock BL, Skuli N, Simon MC. Hypoxia-Induced Angiogenesis: Good and Evil. Genes Cancer. 2011;2(12):1117-1133. doi:10.1177/1947601911423654
101. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677-684. doi:10.1038/nm0603-677
102. Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. Am J Pathol. 2012;181(4):1126-1141. doi:10.1016/j.ajpath.2012.06.030
103. Dvorak HF. Tumors: Wounds That Do Not Heal—Redux. Cancer Immunol Res. 2015;3(1):1-11. doi:10.1158/2326-6066.CIR-14-0209
104. Rosińska S, Gavard J. Tumor Vessels Fuel the Fire in Glioblastoma. Int J Mol Sci. 2021;22(12):6514. doi:10.3390/ijms22126514
105. Brat DJ, Van Meir EG. Glomeruloid Microvascular Proliferation Orchestrated by VPF/VEGF: A New World of Angiogenesis Research. Am J Pathol. 2001;158(3):789-796. doi:10.1016/S0002-9440(10)64025-4
106. Birner P, Piribauer M, Fischer I, et al. Vascular Patterns in Glioblastoma Influence Clinical Outcome and Associate with Variable Expression of Angiogenic Proteins: Evidence for Distinct Angiogenic Subtypes. Brain Pathol. 2003;13(2):133-143. doi:10.1111/j.1750-3639.2003.tb00013.x
107. Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncol. 2005;7(4):452-464. doi:10.1215/S1152851705000232
108. Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol. 2007;2:251-275. doi:10.1146/annurev.pathol.2.010506.134925
109. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69-82. doi:10.1016/j.ccr.2006.11.020
110. Bao S, Wu Q, Sathornsumetee S, et al. Stem Cell–like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor. Cancer Res. 2006;66(16):7843-7848. doi:10.1158/0008-5472.CAN-06-1010
111. Hardee ME, Marciscano AE, Medina-Ramirez CM, et al. Resistance of Glioblastoma-Initiating Cells to Radiation Mediated by the Tumor Microenvironment Can Be Abolished by Inhibiting Transforming Growth Factor-β. Cancer Res. 2012;72(16):4119-4129. doi:10.1158/0008-5472.CAN-12-0546
112. Rong Y, Durden DL, Van Meir EG, Brat DJ. “Pseudopalisading” necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol. 2006;65(6):529-539. doi:10.1097/00005072-200606000-00001
113. Necrosis as a prognostic factor in glioblastoma multiforme - Barker - 1996 - Cancer - Wiley Online Library. Accessed February 20, 2023.
114. Heddleston JM, Li Z, Hjelmeland AB, Rich JN. The Hypoxic Microenvironment Maintains Glioblastoma Stem Cells and Promotes Reprogramming towards a Cancer Stem Cell Phenotype. Cell Cycle Georget Tex. 2009;8(20):3274-3284.
115. McCord AM, Jamal M, Shankavarum UT, Lang FF, Camphausen K, Tofilon PJ. Physiologic Oxygen Concentration Enhances the Stem-Like Properties of CD133+ Human Glioblastoma Cells In vitro. Mol Cancer Res. 2009;7(4):489-497. doi:10.1158/1541-7786.MCR-08-0360
116. Pistollato F, Chen HL, Rood BR, et al. Hypoxia and HIF1α Repress the Differentiative Effects of BMPs in High-Grade Glioma. Stem Cells. 2009;27(1):7-17. doi:10.1634/stemcells. 2008-0402
117. Johansson E, Grassi ES, Pantazopoulou V, et al. CD44 Interacts with HIF-2α to Modulate the Hypoxic Phenotype of Perinecrotic and Perivascular Glioma Cells. Cell Rep. 2017;20(7):1641-1653. doi:10.1016/j.celrep.2017.07.049
118. Tejero R, Huang Y, Katsyv I, et al. Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment. EBioMedicine. 2019;42:252-269. doi:10.1016/j.ebiom.2019.03.064
119. Ishii A, Kimura T, Sadahiro H, et al. Histological Characterization of the Tumorigenic “Peri-Necrotic Niche” Harboring Quiescent Stem-Like Tumor Cells in Glioblastoma. PLOS ONE. 2016;11(1):e0147366. doi:10.1371/journal.pone.0147366
120. Kahlert UD, Maciaczyk D, Dai F, et al. Resistance to Hypoxia-Induced, BNIP3-Mediated Cell Death Contributes to an Increase in a CD133-Positive Cell Population in Human Glioblastomas In Vitro. J Neuropathol Exp Neurol. 2012;71(12):1086-1099. doi:10.1097/NEN.0b013e3182772d83
121. Wang P, Wan W, Xiong S, et al. HIF1α regulates glioma chemosensitivity through the transformation between differentiation and dedifferentiation in various oxygen levels. Sci Rep. 2017;7(1):7965. doi:10.1038/s41598-017-06086-2
122. Parney IF, Waldron JS, Parsa AT. Flow cytometry and in vitro analysis of human glioma-associated macrophages. Laboratory investigation. J Neurosurg. 2009;110(3):572-582. doi:10.3171/2008.7.JNS08475
123. D’Alessio A, Proietti G, Sica G, Scicchitano BM. Pathological and Molecular Features of Glioblastoma and Its Peritumoral Tissue. Cancers. 2019;11(4):469. doi:10.3390/cancers11040469
124. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20-27. doi:10.1038/nn.4185
125. Morisse MC, Jouannet S, Dominguez-Villar M, Sanson M, Idbaih A. Interactions between tumor-associated macrophages and tumor cells in glioblastoma: unraveling promising targeted therapies. Expert Rev Neurother. 2018;18(9):729-737. doi:10.1080/14737175.2018.1510321
126. Grégoire H, Roncali L, Rousseau A, et al. Targeting Tumor Associated Macrophages to Overcome Conventional Treatment Resistance in Glioblastoma. Front Pharmacol. 2020;11:368. doi:10.3389/fphar.2020.00368
127. Qian BZ, Pollard JW. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell. 2010;141(1):39-51. doi:10.1016/j.cell.2010.03.014
128. Ruffell B, Coussens LM. Macrophages and Therapeutic Resistance in Cancer. Cancer Cell. 2015;27(4):462-472. doi:10.1016/j.ccell.2015.02.015
129. Yeung Y, McDonald K, Grewal T, Munoz L. Interleukins in glioblastoma pathophysiology: implications for therapy. Br J Pharmacol. 2013;168(3):591-606. doi:10.1111/bph.12008
130. Rempel SA, Dudas S, Ge S, Gutiérrez JA. Identification and Localization of the Cytokine SDF1 and Its Receptor, CXC Chemokine Receptor 4, to Regions of Necrosis and Angiogenesis in Human Glioblastoma. Clin Cancer Res. 2000;6(1):102-111.
131. Wu A, Wei J, Kong LY, et al. Glioma cancer stem cells induce immunosuppressive macrophages/ microglia. Neuro-Oncol. 2010;12(11):1113-1125. doi:10.1093/neuonc/noq082
132. Kumar V, Gabrilovich DI. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology. 2014;143(4):512-519. doi:10.1111/imm.12380
133. Herting CJ, Chen Z, Maximov V, et al. Tumour-associated macrophage-derived interleukin-1 mediates glioblastoma-associated cerebral oedema. Brain J Neurol. 2019;142(12):3834-3851. doi:10.1093/brain/awz331
134. Mega A, Hartmark Nilsen M, Leiss LW, et al. Astrocytes enhance glioblastoma growth. Glia. 2020;68(2):316-327. doi:10.1002/glia.23718
135. Brandao M, Simon T, Critchley G, Giamas G. Astrocytes, the rising stars of the glioblastoma microenvironment. Glia. 2019;67(5):779-790. doi:10.1002/glia.23520
136. Pekny M, Pekna M. Astrocyte Reactivity and Reactive Astrogliosis: Costs and Benefits. Physiol Rev. 2014;94(4):1077-1098. doi:10.1152/physrev.00041.2013
137. Placone AL, Quiñones-Hinojosa A, Searson PC. The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2016;37(1):61-69. doi:10.1007/s13277-015-4242-0
138. Oushy S, Hellwinkel JE, Wang M, et al. Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos Trans R Soc Lond B Biol Sci. 2018;373(1737):20160477. doi:10.1098/rstb.2016.0477
139. John Lin CC, Yu K, Hatcher A, et al. Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci. 2017;20(3):396-405. doi:10.1038/nn.4493
140. Schiffer D, Annovazzi L, Casalone C, Corona C, Mellai M. Glioblastoma: Microenvironment and Niche Concept. Cancers. 2019;11(1):5. doi:10.3390/cancers11010005
141. Westphal M, Lamszus K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci. 2011;12(9):495-508. doi:10.1038/nrn3060
142. Rath BH, Fair JM, Jamal M, Camphausen K, Tofilon PJ. Astrocytes Enhance the Invasion Potential of Glioblastoma Stem-Like Cells. PLOS ONE. 2013;8(1):e54752. doi:10.1371/journal.pone.0054752
143. Seike T, Fujita K, Yamakawa Y, et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis. 2011;28(1):13-25. doi:10.1007/s10585-010-9354-8
144. Li R, Li G, Deng L, et al. IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1. Oncol Rep. 2010;23(6):1553-1559. doi:10.3892/or_00000795
145. Zhang H, Zhou Y, Cui B, Liu Z, Shen H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed Pharmacother. 2020;126:110086. doi:10.1016/j.biopha.2020.110086
146. Kitai R, Horita R, Sato K, et al. Nestin expression in astrocytic tumors delineates tumor infiltration. Brain Tumor Pathol. 2010;27(1):17-21. doi:10.1007/s10014-009-0261-0
147. Ishiwata T, Teduka K, Yamamoto T, Kawahara K, Matsuda Y, Naito Z. Neuroepithelial stem cell marker nestin regulates the migration, invasion and growth of human gliomas. Oncol Rep. 2011;26(1):91-99. doi:10.3892/or.2011.1267
148. Wang J, Xu SL, Duan JJ, et al. Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1–SOX2 positive-feedback loop. Nat Neurosci. 2019;22(1):91-105. doi:10.1038/s41593-018-0285-z
149. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol CB. 2007;17(2):165-172. doi:10.1016/j.cub.2006.11.033
150. Sherry MM, Reeves A, Wu JK, Cochran BH. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells Dayt Ohio. 2009;27(10):2383-2392. doi:10.1002/stem.185
151. Hossain A, Gumin J, Gao F, et al. Mesenchymal Stem Cells Isolated From Human Gliomas Increase Proliferation and Maintain Stemness of Glioma Stem Cells Through the IL-6/gp130/STAT3 Pathway. Stem Cells Dayt Ohio. 2015;33(8):2400-2415. doi:10.1002/stem.2053
152. Trenner A, Sartori AA. Harnessing DNA Double-Strand Break Repair for Cancer Treatment. Front Oncol. 2019;9. Accessed April 28, 2023.
153. Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. doi:10.1016/j.redox.2018.101084
154. Chen Q, Chai YC, Mazumder S, et al. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ. 2003;10(3):323-334. doi:10.1038/sj.cdd.4401148
155. Smith HL, Southgate H, Tweddle DA, Curtin NJ. DNA damage checkpoint kinases in cancer. Expert Rev Mol Med. 2020;22:e2. doi:10.1017/erm.2020.3
156. Squatrito M, Brennan CW, Helmy K, Huse JT, Petrini JH, Holland EC. Loss of ATM/Chk2/p53 Pathway Components Accelerates Tumor Development and Contributes to Radiation Resistance in Gliomas. Cancer Cell. 2010;18(6):619-629. doi:10.1016/j.ccr.2010.10.034
157. Mladenov E, Magin S, Soni A, Iliakis G. DNA Double-Strand Break Repair as Determinant of Cellular Radiosensitivity to Killing and Target in Radiation Therapy. Front Oncol. 2013;3. Accessed April 15, 2023.
158. Zhou W, Sun M, Li GH, et al. Activation of the phosphorylation of ATM contributes to radioresistance of glioma stem cells. Oncol Rep. 2013;30(4):1793-1801. doi:10.3892/or.2013.2614
159. Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ. Selective Inhibition of Parallel DNA Damage Response Pathways Optimizes Radiosensitization of Glioblastoma Stem-like Cells. Cancer Res. 2015;75(20):4416-4428. doi:10.1158/0008-5472.CAN-14-3790
160. Tamura K, Aoyagi M, Wakimoto H, et al. Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation: Clinical article. J Neurosurg. 2010;113(2):310-318. doi:10.3171/2010.2.JNS091607
161. Tamura K, Aoyagi M, Ando N, et al. Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy: Laboratory investigation. J Neurosurg. 2013;119(5):1145-1155. doi:10.3171/2013.7.JNS122417
162. Lomonaco SL, Finniss S, Xiang C, et al. The induction of autophagy by γ-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer. 2009;125(3):717-722. doi:10.1002/ijc.24402
163. Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016;3(3):198-210. doi:10.1016/j.gendis.2016.04.007
164. Ohba S, Yamashiro K, Hirose Y. Inhibition of DNA Repair in Combination with Temozolomide or Dianhydrogalactiol Overcomes Temozolomide-Resistant Glioma Cells. Cancers. 2021;13(11):2570. doi:10.3390/cancers13112570
165. Pistollato F, Abbadi S, Rampazzo E, et al. Intratumoral Hypoxic Gradient Drives Stem Cells Distribution and MGMT Expression in Glioblastoma. Stem Cells. 2010;28(5):851-862. doi:10.1002/stem.415
166. Hegi ME, Diserens AC, Gorlia T, et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N Engl J Med. 2005;352(10):997-1003. doi:10.1056/NEJMoa043331
167. van Nifterik KA, van den Berg J, van der Meide WF, et al. Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide. Br J Cancer. 2010;103(1):29-35. doi:10.1038/sj.bjc.6605712
168. Brandes AA, Franceschi E, Tosoni A, et al. O6-methylguanine DNA-methyltransferase methylation status can change between first surgery for newly diagnosed glioblastoma and second surgery for recurrence: clinical implications. Neuro-Oncol. 2010;12(3):283-288. doi:10.1093/neuonc/nop050
169. Ewald JA, Desotelle JA, Wilding G, Jarrard DF. Therapy-Induced Senescence in Cancer. JNCI J Natl Cancer Inst. 2010;102(20):1536-1546. doi:10.1093/jnci/djq364
170. Prasanna PG, Citrin DE, Hildesheim J, et al. Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. JNCI J Natl Cancer Inst. 2021;113(10):1285-1298. doi:10.1093/jnci/djab064
171. Saleh T, Tyutyunyk-Massey L, Gewirtz DA. Tumor Cell Escape from Therapy-Induced Senescence as a Model of Disease Recurrence after Dormancy. Cancer Res. 2019;79(6):1044-1046. doi:10.1158/0008-5472.CAN-18-3437
172. Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer. 2015;15(7):397-408. doi:10.1038/nrc3960
173. Cahu J, Bustany S, Sola B. Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells. Cell Death Dis. 2012;3(12):e446-e446. doi:10.1038/cddis.2012.183
174. Mosteiro L, Pantoja C, de Martino A, Serrano M. Senescence promotes in vivo reprogramming through p16INK4a and IL-6. Aging Cell. 2018;17(2):e12711. doi:10.1111/acel.12711
175. Nacarelli T, Fukumoto T, Zundell JA, et al. NAMPT Inhibition Suppresses Cancer Stem-like Cells Associated with Therapy-Induced Senescence in Ovarian Cancer. Cancer Res. 2020;80(4):890-900. doi:10.1158/0008-5472.CAN-19-2830
176. Ciardiello F, Tortora G. EGFR Antagonists in Cancer Treatment. N Engl J Med. 2008;358(11):1160-1174. doi:10.1056/NEJMra0707704
177. Bhullar KS, Lagarón NO, McGowan EM, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48. doi:10.1186/s12943-018-0804-2
178. Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R. FDA Drug Approval Summary: Erlotinib (Tarceva®) Tablets. The Oncologist. 2005;10(7):461-466. doi:10.1634/theoncologist.10-7-461
179. Prados MD, Chang SM, Butowski N, et al. Phase II Study of Erlotinib Plus Temozolomide During and After Radiation Therapy in Patients With Newly Diagnosed Glioblastoma Multiforme or Gliosarcoma. J Clin Oncol. 2009;27(4):579-584. doi:10.1200/JCO.2008.18.9639
180. Raizer JJ, Abrey LE, Lassman AB, et al. A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy†. Neuro-Oncol. 2010;12(1):95-103. doi:10.1093/neuonc/nop015
181. Hegi ME, Diserens AC, Bady P, et al. Pathway Analysis of Glioblastoma Tissue after Preoperative Treatment with the EGFR Tyrosine Kinase Inhibitor Gefitinib—A Phase II Trial. Mol Cancer Ther. 2011;10(6):1102-1112. doi:10.1158/1535-7163.MCT-11-0048
182. Lassman AB, Rossi MR, Razier JR, et al. Molecular Study of Malignant Gliomas Treated with Epidermal Growth Factor Receptor Inhibitors: Tissue Analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01. Clin Cancer Res. 2005;11(21):7841-7850. doi:10.1158/1078-0432.CCR-05-0421
183. Sepúlveda-Sánchez JM, Vaz MÁ, Balañá C, et al. Phase II trial of dacomitinib, a pan–human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification. Neuro-Oncol. 2017;19(11):1522-1531. doi:10.1093/neuonc/nox105
184. Reardon DA, Nabors LB, Mason WP, et al. Phase I/randomized phase II study of afatinib, an irreversible ErbB family blocker, with or without protracted temozolomide in adults with recurrent glioblastoma. Neuro-Oncol. 2015;17(3):430-439. doi:10.1093/neuonc/nou160
185. Jänne PA, Yang JCH, Kim DW, et al. AZD9291 in EGFR Inhibitor–Resistant Non–Small-Cell Lung Cancer. N Engl J Med. 2015;372(18):1689-1699. doi:10.1056/NEJMoa1411817
186. Liu X, Chen X, Shi L, et al. The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma. J Exp Clin Cancer Res. 2019;38(1):219. doi:10.1186/s13046-019-1235-7
187. Cardona AF, Jaramillo-Velásquez D, Ruiz-Patiño A, et al. Efficacy of osimertinib plus bevacizumab in glioblastoma patients with simultaneous EGFR amplification and EGFRvIII mutation. J Neurooncol. 2021;154(3):353-364. doi:10.1007/s11060-021-03834-3
188. Belda-Iniesta C, de Castro Carpeño J, Saenz EC, Gutiérrez M, Perona R, González-Barón M. Long term responses with cetuximab therapy in glioblastoma multiforme. Cancer Biol Ther. 2006;5(8):912-914. doi:10.4161/cbt.5.8.3118
189. Neyns B, Sadones J, Joosens E, et al. Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol. 2009;20(9):1596-1603. doi:10.1093/annonc/mdp032
190. She L, Gong X, Su L, Liu C. Radiotherapy Plus Temozolomide With or Without Nimotuzumab Against the Newly Diagnosed EGFR-Positive Glioblastoma: A Retrospective Cohort Study. The Oncologist. 2023;28(1):e45-e53. doi:10.1093/oncolo/oyac202
191. Du XJ, Li XM, Cai LB, et al. Efficacy and safety of nimotuzumab in addition to radiotherapy and temozolomide for cerebral glioblastoma: a phase II multicenter clinical trial. J Cancer. 2019;10(14):3214-3223. doi:10.7150/jca.30123
192. Yu YJ, Watts RJ. Developing Therapeutic Antibodies for Neurodegenerative Disease. Neurotherapeutics. 2013;10(3):459-472. doi:10.1007/s13311-013-0187-4
193. Niewoehner J, Bohrmann B, Collin L, et al. Increased Brain Penetration and Potency of a Therapeutic Antibody Using a Monovalent Molecular Shuttle. Neuron. 2014;81(1):49-60. doi:10.1016/j.neuron.2013.10.061
194. Bajracharya R, Caruso AC, Vella LJ, Nisbet RM. Current and Emerging Strategies for Enhancing Antibody Delivery to the Brain. Pharmaceutics. 2021;13(12):2014. doi:10.3390/pharmaceutics13122014
195. Zeiadeh I, Najjar A, Karaman R. Strategies for Enhancing the Permeation of CNS-Active Drugs through the Blood-Brain Barrier: A Review. Molecules. 2018;23(6):1289. doi:10.3390/molecules23061289
196. Burger MT, Pecchi S, Wagman A, et al. Identification of NVP-BKM120 as a Potent, Selective, Orally Bioavailable Class I PI3 Kinase Inhibitor for Treating Cancer. ACS Med Chem Lett. 2011;2(10):774-779. doi:10.1021/ml200156t
197. Netland IA, Førde HE, Sleire L, et al. Treatment with the PI3K inhibitor buparlisib (NVP-BKM120) suppresses the growth of established patient-derived GBM xenografts and prolongs survival in nude rats. J Neurooncol. 2016;129(1):57-66. doi:10.1007/s11060-016-2158-1
198. Wen PY, Touat M, Alexander BM, et al. Buparlisib in Patients With Recurrent Glioblastoma Harboring Phosphatidylinositol 3-Kinase Pathway Activation: An Open-Label, Multicenter, Multi-Arm, Phase II Trial. J Clin Oncol. 2019;37(9):741-750. doi:10.1200/JCO.18.01207
199. Wen PY, Rodon JA, Mason W, et al. Phase I, open-label, multicentre study of buparlisib in combination with temozolomide or with concomitant radiation therapy and temozolomide in patients with newly diagnosed glioblastoma. ESMO Open. 2020;5(4). doi:10.1136/esmoopen-2020-000673
200. Hainsworth JD, Becker KP, Mekhail T, et al. Phase I/II study of bevacizumab with BKM120, an oral PI3K inhibitor, in patients with refractory solid tumors (phase I) and relapsed/refractory glioblastoma (phase II). J Neurooncol. 2019;144(2):303-311. doi:10.1007/s11060-019-03227-7
201. Zhang S, Peng X, Li X, et al. BKM120 sensitizes glioblastoma to the PARP inhibitor rucaparib by suppressing homologous recombination repair. Cell Death Dis. 2021;12(6):1-14. doi:10.1038/s41419-021-03805-6
202. Harder BG, Peng S, Sereduk CP, et al. Inhibition of phosphatidylinositol 3-kinase by PX-866 suppresses temozolomide-induced autophagy and promotes apoptosis in glioblastoma cells. Mol Med. 2019;25(1):49. doi:10.1186/s10020-019-0116-z
203. Pitz MW, Eisenhauer EA, MacNeil MV, et al. Phase II study of PX-866 in recurrent glioblastoma. Neuro-Oncol. 2015;17(9):1270-1274. doi:10.1093/neuonc/nou365
204. Xie S, Ni J, McFaline-Figueroa JR, et al. Divergent Roles of PI3K Isoforms in PTEN-Deficient Glioblastomas. Cell Rep. 2020;32(13):108196. doi:10.1016/j.celrep.2020.108196
205. Hutchings K, Pridham K, Liu M, Sheng Z. DDDR-19. NEXT-GENERATION PI3K INHIBITOR FOR GLIOBLASTOMA TREATMENT. Neuro-Oncol. 2022;24(Supplement_7):vii102. doi:10.1093/neuonc/noac209.384
206. Pridham KJ, Le L, Guo S, et al. PIK3CB/p110β is a selective survival factor for glioblastoma. Neuro-Oncol. 2018;20(4):494-505. doi:10.1093/neuonc/nox181
207. Burnett GL, Yang YC, Aggen JB, et al. Discovery of RMC-5552, a Selective Bi-Steric Inhibitor of mTORC1, for the Treatment of mTORC1-Activated Tumors. J Med Chem. 2023;66(1):149-169. doi:10.1021/acs.jmedchem.2c01658
208. Kaley TJ, Panageas KS, Mellinghoff IK, et al. Phase II trial of an AKT inhibitor (perifosine) for recurrent glioblastoma. J Neurooncol. 2019;144(2):403-407. doi:10.1007/s11060-019-03243-7
209. Wen PY, Chang SM, Lamborn KR, et al. Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro-Oncol. 2014;16(4):567-578. doi:10.1093/neuonc/not247
210. Ma DJ, Galanis E, Anderson SK, et al. A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro-Oncol. 2015;17(9):1261-1269. doi:10.1093/neuonc/nou328
211. Jin J, Grigore F, Chen CC, Li M. Self‑renewal signaling pathways and differentiation therapies of glioblastoma stem cells (Review). Int J Oncol. 2021;59(1):1-11. doi:10.3892/ijo.2021.5225
212. Wang J, Wakeman TP, Lathia JD, et al. Notch Promotes Radioresistance of Glioma Stem Cells. Stem Cells. 2010;28(1):17-28. doi:10.1002/stem.261
213. Fan X, Khaki L, Zhu TS, et al. NOTCH Pathway Blockade Depletes CD133-Positive Glioblastoma Cells and Inhibits Growth of Tumor Neurospheres and Xenografts. Stem Cells. 2010;28(1):5-16. doi:10.1002/stem.254
214. Hu YY, Zheng MH, Cheng G, et al. Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells. BMC Cancer. 2011;11(1):82. doi:10.1186/1471-2407-11-82
215. Hoffman LM, Fouladi M, Olson J, et al. Phase I trial of weekly MK-0752 in children with refractory central nervous system malignancies: a pediatric brain tumor consortium study. Childs Nerv Syst. 2015;31(8):1283-1289. doi:10.1007/s00381-015-2725-3
216. Fouladi M, Stewart CF, Olson J, et al. Phase I Trial of MK-0752 in Children With Refractory CNS Malignancies: A Pediatric Brain Tumor Consortium Study. J Clin Oncol. 2011;29(26):3529-3534. doi:10.1200/JCO.2011.35.7806
217. Krop I, Demuth T, Guthrie T, et al. Phase I Pharmacologic and Pharmacodynamic Study of the Gamma Secretase (Notch) Inhibitor MK-0752 in Adult Patients With Advanced Solid Tumors. J Clin Oncol. 2012;30(19):2307-2313. doi:10.1200/JCO.2011.39.1540
218. Saito N, Fu J, Zheng S, et al. A High Notch Pathway Activation Predicts Response to γ Secretase Inhibitors in Proneural Subtype of Glioma Tumor-Initiating Cells. Stem Cells. 2014;32(1):301-312. doi:10.1002/stem.1528
219. Xu R, Shimizu F, Hovinga K, et al. Molecular and Clinical Effects of Notch Inhibition in Glioma Patients: A Phase 0/I Trial. Clin Cancer Res. 2016;22(19):4786-4796. doi:10.1158/1078-0432.CCR-16-0048
220. Yi L, Zhou X, Li T, et al. Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. J Exp Clin Cancer Res. 2019;38(1):339. doi:10.1186/s13046-019-1319-4
221. Saito N, Aoki K, Hirai N, et al. Effect of Notch expression in glioma stem cells on therapeutic response to chemo-radiotherapy in recurrent glioblastoma. Brain Tumor Pathol. 2015;32(3):176-183. doi:10.1007/s10014-015-0215-7
222. Wolfe MS. Aspartic Proteases of Alzheimer’s Disease: β- and γ-Secretases. In: Bradshaw RA, Stahl PD, eds. Encyclopedia of Cell Biology. Academic Press; 2016:661-669. doi:10.1016/B978-0-12-394447-4.10077-X
223. Doody RS, Raman R, Farlow M, et al. A Phase 3 Trial of Semagacestat for Treatment of Alzheimer’s Disease. N Engl J Med. 2013;369(4):341-350. doi:10.1056/NEJMoa1210951
224. Ding X, Ding C, Wang F, et al. Effects of NOTCH1 signaling inhibitor γ‑secretase inhibitor II on growth of cancer stem cells. Oncol Lett. 2018;16(5):6095-6099. doi:10.3892/ol.2018.9377
225. Wickström M, Dyberg C, Milosevic J, et al. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat Commun. 2015;6(1):8904. doi:10.1038/ncomms9904
226. Lee Y, Kim KH, Kim DG, et al. FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2. PLOS ONE. 2015;10(10):e0137703. doi:10.1371/journal.pone.0137703
227. Binda E, Visioli A, Giani F, et al. Wnt5a Drives an Invasive Phenotype in Human Glioblastoma Stem-like Cells. Cancer Res. 2017;77(4):996-1007.
228. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta BBA - Rev Cancer. 2003;1653(1):1-24. doi:10.1016/S0304-419X(03)00005-2
229. Qiu J, Shi Z, Jiang J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov Today. 2017;22(1):148-156. doi:10.1016/j.drudis.2016.09.017
230. Ma HI, Chiou SH, Hueng DY, et al. Celecoxib and radioresistant glioblastoma-derived CD133+ cells: improvement in radiotherapeutic effects: Laboratory investigation. J Neurosurg. 2011;114(3):651-662. doi:10.3171/2009.11.JNS091396
231. Stockhammer F, Misch M, Koch A, et al. Continuous low-dose temozolomide and celecoxib in recurrent glioblastoma. J Neurooncol. 2010;100(3):407-415. doi:10.1007/s11060-010-0192-y
232. Halatsch ME, Dwucet A, Schmidt CJ, et al. In Vitro and Clinical Compassionate Use Experiences with the Drug-Repurposing Approach CUSP9v3 in Glioblastoma. Pharmaceuticals. 2021;14(12):1241. doi:10.3390/ph14121241
233. Latour M, Her NG, Kesari S, Nurmemmedov E. WNT Signaling as a Therapeutic Target for Glioblastoma. Int J Mol Sci. 2021;22(16):8428. doi:10.3390/ijms22168428
234. Carballo GB, Honorato JR, de Lopes GPF, Spohr TCL de S e. A highlight on Sonic hedgehog pathway. Cell Commun Signal. 2018;16(1):11. doi:10.1186/s12964-018-0220-7
235. Cochrane CR, Szczepny A, Watkins DN, Cain JE. Hedgehog Signaling in the Maintenance of Cancer Stem Cells. Cancers. 2015;7(3):1554-1585. doi:10.3390/cancers7030851
236. Uchida H, Arita K, Yunoue S, et al. Role of sonic hedgehog signaling in migration of cell lines established from CD133-positive malignant glioma cells. J Neurooncol. 2011;104(3):697-704. doi:10.1007/s11060-011-0552-2
237. Santoni M, Burattini L, Nabissi M, et al. Essential Role of Gli Proteins in Glioblastoma Multiforme. Curr Protein Pept Sci. 14(2):133-140.
238. Nanta R, Shrivastava A, Sharma J, Shankar S, Srivastava RK. Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells. Mol Cell Biochem. 2019;454(1):11-23. doi:10.1007/s11010-018-3448-z
239. Wick W, Dettmer S, Berberich A, et al. N2M2 (NOA-20) phase I/II trial of molecularly matched targeted therapies plus radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. Neuro-Oncol. 2019;21(1):95-105. doi:10.1093/neuonc/noy161
240. Li Y, Song Q, Day BW. Phase I and phase II sonidegib and vismodegib clinical trials for the treatment of paediatric and adult MB patients: a systemic review and meta-analysis. Acta Neuropathol Commun. 2019;7(1):123. doi:10.1186/s40478-019-0773-8
241. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333(2):328-335. doi:10.1016/j.bbrc.2005.05.132
242. Vredenburgh JJ, Desjardins A, Herndon JE II, et al. Phase II Trial of Bevacizumab and Irinotecan in Recurrent Malignant Glioma. Clin Cancer Res. 2007;13(4):1253-1259. doi:10.1158/1078-0432.CCR-06-2309
243. Cohen MH, Shen YL, Keegan P, Pazdur R. FDA Drug Approval Summary: Bevacizumab (Avastin®) as Treatment of Recurrent Glioblastoma Multiforme. The Oncologist. 2009;14(11):1131-1138. doi:10.1634/theoncologist.2009-0121
244. Sandmann T, Bourgon R, Garcia J, et al. Patients With Proneural Glioblastoma May Derive Overall Survival Benefit From the Addition of Bevacizumab to First-Line Radiotherapy and Temozolomide: Retrospective Analysis of the AVAglio Trial. J Clin Oncol. 2015;33(25):2735-2744. doi:10.1200/JCO.2015.61.5005
245. Piao Y, Liang J, Holmes L, et al. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-Oncol. 2012;14(11):1379-1392. doi:10.1093/neuonc/nos158
246. Piao Y, Liang J, Holmes L, Henry V, Sulman E, de Groot JF. Acquired Resistance to Anti-VEGF Therapy in Glioblastoma Is Associated with a Mesenchymal Transition. Clin Cancer Res. 2013;19(16):4392-4403. doi:10.1158/1078-0432.CCR-12-1557
247. Jain RK. Normalizing Tumor Microenvironment to Treat Cancer: Bench to Bedside to Biomarkers. J Clin Oncol. 2013;31(17):2205-2218. doi:10.1200/JCO.2012.46.3653
248. Dong X, Ren J, Amoozgar Z, et al. Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. J Immunother Cancer. 2023;11(3):e005583. doi:10.1136/jitc-2022-005583
249. de Vries NA, Beijnen JH, Boogerd W, van Tellingen O. Blood–brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother. 2006;6(8):1199-1209. doi:10.1586/14737175.6.8.1199
250. Rivera LB, Bergers G. Intertwined regulation of angiogenesis and immunity by myeloid cells. Trends Immunol. 2015;36(4):240-249. doi:10.1016/
251. Lu-Emerson C, Duda DG, Emblem KE, et al. Lessons From Anti–Vascular Endothelial Growth Factor and Anti–Vascular Endothelial Growth Factor Receptor Trials in Patients With Glioblastoma. J Clin Oncol. 2015;33(10):1197-1213. doi:10.1200/JCO.2014.55.9575
252. Martin JD, Seano G, Jain RK. Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. Annu Rev Physiol. 2019;81(1):505-534. doi:10.1146/annurev-physiol-020518-114700
253. Venere M, Hamerlik P, Wu Q, et al. Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death Differ. 2014;21(2):258-269. doi:10.1038/cdd.2013.136
254. Lesueur P, Lequesne J, Grellard JM, et al. Phase I/IIa study of concomitant radiotherapy with olaparib and temozolomide in unresectable or partially resectable glioblastoma: OLA-TMZ-RTE-01 trial protocol. BMC Cancer. 2019;19(1):198. doi:10.1186/s12885-019-5413-y
255. Donawho CK, Luo Y, Luo Y, et al. ABT-888, an Orally Active Poly(ADP-Ribose) Polymerase Inhibitor that Potentiates DNA-Damaging Agents in Preclinical Tumor Models. Clin Cancer Res. 2007;13(9):2728-2737. doi:10.1158/1078-0432.CCR-06-3039
256. Parrish KE, Cen L, Murray J, et al. Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System. Mol Cancer Ther. 2015;14(12):2735-2743. doi:10.1158/1535-7163.MCT-15-0553
257. Robins HI, Zhang P, Gilbert MR, et al. A randomized phase I/II study of ABT-888 in combination with temozolomide in recurrent temozolomide resistant glioblastoma: an NRG oncology RTOG group study. J Neurooncol. 2016;126(2):309-316. doi:10.1007/s11060-015-1966-z
258. Sim HW, Galanis E, Khasraw M. PARP Inhibitors in Glioma: A Review of Therapeutic Opportunities. Cancers. 2022;14(4):1003. doi:10.3390/cancers14041003
259. Rahman MA, Gras Navarro A, Brekke J, et al. Bortezomib administered prior to temozolomide depletes MGMT, chemosensitizes glioblastoma with unmethylated MGMT promoter and prolongs animal survival. Br J Cancer. 2019;121(7):545-555. doi:10.1038/s41416-019-0551-1
260. Tang JH, Yang L, Chen JX, et al. Bortezomib inhibits growth and sensitizes glioma to temozolomide (TMZ) via down-regulating the FOXM1–Survivin axis. Cancer Commun. 2019;39(1):81. doi:10.1186/s40880-019-0424-2
261. Kong XT, Nguyen NT, Choi YJ, et al. Phase 2 Study of Bortezomib Combined With Temozolomide and Regional Radiation Therapy for Upfront Treatment of Patients With Newly Diagnosed Glioblastoma Multiforme: Safety and Efficacy Assessment. Int J Radiat Oncol. 2018;100(5):1195-1203. doi:10.1016/j.ijrobp.2018.01.001
262. Peereboom DM, Ye X, Mikkelsen T, et al. A Phase II and Pharmacodynamic Trial of RO4929097 for Patients with Recurrent/ Progressive Glioblastoma. Neurosurgery. 2021;88(2):246. doi:10.1093/neuros/nyaa412
263. Vaz MÁ, Gironés R, Del Barco S, et al. Safety and efficacy of glasdegib in combination with temozolomide and radiotherapy in patients with newly diagnosed glioblastoma: Phase Ib/II GEINO 1602 trial. J Clin Oncol. 2022;40(16_suppl):2060-2060. doi:10.1200/JCO.2022.40.16_suppl.2060
264. Sloan AE, Nock CJ, Ye X, et al. ABTC-0904: targeting glioma stem cells in GBM: a phase 0/II study of hedgehog pathway inhibitor GDC-0449. J Neurooncol. 2023;161(1):33-43. doi:10.1007/s11060-022-04193-3
265. Tsien CI, Pugh SL, Dicker AP, et al. NRG Oncology/RTOG1205: A Randomized Phase II Trial of Concurrent Bevacizumab and Reirradiation Versus Bevacizumab Alone as Treatment for Recurrent Glioblastoma. J Clin Oncol. 2023;41(6):1285-1295. doi:10.1200/JCO.22.00164
266. Arrillaga-Romany I, Sahebjam S, Picconi D, et al. ACTR-61. A RANDOMIZED PHASE 2 TRIAL OF CEDIRANIB IN COMBINATION WITH OLAPARIB VERSUS BEVACIZUMAB IN PATIENTS WITH RECURRENT GLIOBLASTOMA. Neuro-Oncol. 2019;21(Supplement_6):vi27. doi:10.1093/neuonc/noz175.103