Antigen Presenting Cell-Mediated HIV-1 Trans Infection in the Establishment and Maintenance of the Viral Reservoir

Main Article Content

Abigail Gerberick Charles R Rinaldo Nicolas Sluis-Cremer

Abstract

Despite potent antiretroviral therapy (ART), an HIV-1 reservoir persists that represents a major barrier to a cure. Understanding the mechanisms by which the HIV-1 reservoir is established and maintained is critical for the discovery of effective treatments to significantly reduce or eliminate the viral reservoir. In addition to cis infection, in which HIV-1 directly infects target CD4+ T cells, cell-to-cell transmission, or trans infection, can also occur. HIV-1 trans infection is significantly more efficient than cis infection, mostly due to the occurrence of multiple infections per cell during transfer. Additionally, trans infection is efficient even in the presence of ART and/or neutralizing antibodies. Cell-to-cell transmission is mediated by CD4+ T cells and professional antigen presenting cells (APC). Here we focus on APC, i.e., myeloid dendritic cells, B lymphocytes, and monocytes/macrophages, that bind, internalize, and transfer HIV-1 to target CD4+ T cells via various proposed mechanisms. We assess the potential impact of trans infection on the establishment and maintenance of the HIV-1 reservoir including its role in disease progression. We consider the natural interactions between APC and CD4+ T cells in vivo that HIV-1 may hijack, allowing for the highly efficient trans infection of CD4+ T cells, maintaining the viral reservoirs in tissue despite undetectable plasma viral loads in peripheral blood. We propose that these modes of viral pathogenesis need to be addressed in potential cure strategies to ensure eradication of the viral reservoir.

Article Details

How to Cite
GERBERICK, Abigail; RINALDO, Charles R; SLUIS-CREMER, Nicolas. Antigen Presenting Cell-Mediated HIV-1 Trans Infection in the Establishment and Maintenance of the Viral Reservoir. Medical Research Archives, [S.l.], v. 11, n. 7.1, july 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4064>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v11i7.1.4064.
Section
Research Articles

References

1. Chomont N, El-Far M, Ancuta P, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. Aug 2009;15(8):893-900. doi:10.1038/nm.1972
2. Finzi D, Blankson J, Siliciano JD, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. May 1999;5(5):512-7. doi:10.1038/8394
3. Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity. Sep 21 2012;37(3):377-88. doi:10.1016/j.immuni.2012.08.010
4. Chun TW, Stuyver L, Mizell SB, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. Nov 25 1997;94(24):13193-7. doi:10.1073/pnas.94.24.13193
5. Smith MZ, Wightman F, Lewin SR. HIV reservoirs and strategies for eradication. Curr HIV/AIDS Rep. Mar 2012;9(1):5-15. doi:10.1007/s11904-011-0108-2
6. Sigal A, Baltimore D. As good as it gets? The problem of HIV persistence despite antiretroviral drugs. Cell Host Microbe. Aug 16 2012;12(2):132-8. doi:10.1016/j.chom.2012.07.005
7. Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res. May 2019;265:115-121. doi:10.1016/j.virusres.2019.03.014
8. Lorenzo-Redondo R, Fryer HR, Bedford T, et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature. Feb 4 2016;530(7588):51-56. doi:10.1038/nature16933
9. Henderson LJ, Reoma LB, Kovacs JA, Nath A. Advances toward Curing HIV-1 Infection in Tissue Reservoirs. J Virol. Jan 17 2020;94(3)doi:10.1128/JVI.00375-19
10. Han Y, Wind-Rotolo M, Yang HC, Siliciano JD, Siliciano RF. Experimental approaches to the study of HIV-1 latency. Nat Rev Microbiol. Feb 2007;5(2):95-106. doi:10.1038/nrmicro1580
11. Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol. Jan 2021;51:101412. doi:10.1016/j.smim.2020.101412
12. Fromentin R, Chomont N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol. Jan 2021;51:101438. doi:10.1016/j.smim.2020.101438
13. Saleh S, Solomon A, Wightman F, Xhilaga M, Cameron PU, Lewin SR. CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood. Dec 15 2007;110(13):4161-4. doi:10.1182/blood-2007-06-097907
14. Barton K, Winckelmann A, Palmer S. HIV-1 Reservoirs During Suppressive Therapy. Trends Microbiol. May 2016;24(5):345-355. doi:10.1016/j.tim.2016.01.006
15. Fletcher CV, Staskus K, Wietgrefe SW, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A. Feb 11 2014;111(6):2307-12. doi:10.1073/pnas.1318249111
16. Kearney MF, Wiegand A, Shao W, et al. Ongoing HIV Replication During ART Reconsidered. Open Forum Infect Dis. Summer 2017;4(3):ofx173. doi:10.1093/ofid/ofx173
17. Sigal A, Kim JT, Balazs AB, et al. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature. Aug 17 2011;477(7362):95-8. doi:10.1038/nature10347
18. Bracq L, Xie M, Benichou S, Bouchet J. Mechanisms for Cell-to-Cell Transmission of HIV-1. Front Immunol. 2018;9:260. doi:10.3389/fimmu.2018.00260
19. Dufloo J, Bruel T, Schwartz O. HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology. Jul 28 2018;15(1):51. doi:10.1186/s12977-018-0434-1
20. Do T, Murphy G, Earl LA, et al. Three-dimensional imaging of HIV-1 virological synapses reveals membrane architectures involved in virus transmission. J Virol. Sep 2014;88(18):10327-39. doi:10.1128/JVI.00788-14
21. Zhong P, Agosto LM, Ilinskaya A, et al. Cell-to-cell transmission can overcome multiple donor and target cell barriers imposed on cell-free HIV. PLoS One. 2013;8(1):e53138. doi:10.1371/journal.pone.0053138
22. Dutartre H, Claviere M, Journo C, Mahieux R. Cell-Free versus Cell-to-Cell Infection by Human Immunodeficiency Virus Type 1 and Human T-Lymphotropic Virus Type 1: Exploring the Link among Viral Source, Viral Trafficking, and Viral Replication. J Virol. Sep 1 2016;90(17):7607-17. doi:10.1128/JVI.00407-16
23. Rappocciolo G, Sluis-Cremer N, Rinaldo CR. Efficient HIV-1 Trans Infection of CD4(+) T Cells Occurs in the Presence of Antiretroviral Therapy. Open Forum Infect Dis. Jul 2019;6(7):ofz253. doi:10.1093/ofid/ofz253
24. Jiang AP, Jiang JF, Wei JF, et al. Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells. J Virol. Dec 30 2015;90(6):2928-37. doi:10.1128/JVI.03008-15
25. Jiang AP, Jiang JF, Guo MG, Jin YM, Li YY, Wang JH. Human Blood-Circulating Basophils Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells. J Virol. Aug 2015;89(15):8050-62. doi:10.1128/JVI.01021-15
26. DeLucia DC, Rinaldo CR, Rappocciolo G. Inefficient HIV-1 trans Infection of CD4(+) T Cells by Macrophages from HIV-1 Nonprogressors Is Associated with Altered Membrane Cholesterol and DC-SIGN. J Virol. Jul 1 2018;92(13) doi:10.1128/JVI.00092-18
27. Gerberick A, DeLucia DC, Piazza P, et al. B Lymphocytes, but Not Dendritic Cells, Efficiently HIV-1 Trans Infect Naive CD4(+) T Cells: Implications for the Viral Reservoir. mBio. Mar 9 2021;12(2)doi:10.1128/mBio.02998-20
28. Ahmed Z, Kawamura T, Shimada S, Piguet V. The role of human dendritic cells in HIV-1 infection. J Invest Dermatol. May 2015;135(5):1225-1233. doi:10.1038/jid.2014.490
29. Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. Scientifica (Cairo). 2013;2013:164203. doi:10.1155/2013/164203
30. Wu L, KewalRamani VN. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol. Nov 2006;6(11):859-68. doi:10.1038/nri1960
31. Manches O, Frleta D, Bhardwaj N. Dendritic cells in progression and pathology of HIV infection. Trends Immunol. Mar 2014;35(3):114-22. doi:10.1016/j.it.2013.10.003
32. Kijewski SD, Gummuluru S. A mechanistic overview of dendritic cell-mediated HIV-1 trans infection: the story so far. Future Virol. Mar 2015;10(3):257-269. doi:10.2217/fvl.15.2
33. McIlroy D, Autran B, Cheynier R, et al. Infection frequency of dendritic cells and CD4+ T lymphocytes in spleens of human immunodeficiency virus-positive patients. J Virol. Aug 1995;69(8):4737-45. doi:10.1128/JVI.69.8.4737-4745.1995
34. Turville SG, Santos JJ, Frank I, et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood. Mar 15 2004;103(6):2170-9. doi:10.1182/blood-2003-09-3129
35. Kulkarni R, Prasad A. Exosomes Derived from HIV-1 Infected DCs Mediate Viral trans-Infection via Fibronectin and Galectin-3. Sci Rep. Nov 1 2017;7(1):14787. doi:10.1038/s41598-017-14817-8
36. Pino M, Erkizia I, Benet S, et al. HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology. May 7 2015;12:37. doi:10.1186/s12977-015-0160-x
37. Izquierdo-Useros N, Lorizate M, Puertas MC, et al. Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 2012;10(12):e1001448. doi:10.1371/journal.pbio.1001448
38. Geijtenbeek TB, van Kooyk Y. DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr Top Microbiol Immunol. 2003;276:31-54. doi:10.1007/978-3-662-06508-2_2
39. Geijtenbeek TB, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell. Mar 3 2000;100(5):587-97. doi:10.1016/s0092-8674(00)80694-7
40. Lambert AA, Gilbert C, Richard M, Beaulieu AD, Tremblay MJ. The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways. Blood. Aug 15 2008;112(4):1299-307. doi:10.1182/blood-2008-01-136473
41. Geijtenbeek TB, van Kooyk Y. Pathogens target DC-SIGN to influence their fate DC-SIGN functions as a pathogen receptor with broad specificity. APMIS. Jul-Aug 2003;111(7-8):698-714. doi:10.1034/j.1600-0463.2003.11107803.x
42. Geijtenbeek TB, van Vliet SJ, van Duijnhoven GC, Figdor CG, van Kooyk Y. DC-SIGN, a dentritic cell-specific HIV-1 receptor present in placenta that infects T cells in trans-a review. Placenta. Apr 2001;22 Suppl A:S19-23. doi:10.1053/plac.2001.0674
43. Izquierdo-Useros N, Lorizate M, McLaren PJ, Telenti A, Krausslich HG, Martinez-Picado J. HIV-1 capture and transmission by dendritic cells: the role of viral glycolipids and the cellular receptor Siglec-1. PLoS Pathog. Jul 2014;10(7):e1004146. doi:10.1371/journal.ppat.1004146
44. Curtis BM, Scharnowske S, Watson AJ. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc Natl Acad Sci U S A. Sep 1 1992;89(17):8356-60. doi:10.1073/pnas.89.17.8356
45. Geijtenbeek TB, Engering A, Van Kooyk Y. DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology. J Leukoc Biol. Jun 2002;71(6):921-31.
46. Yu HJ, Reuter MA, McDonald D. HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog. Aug 22 2008;4(8):e1000134. doi:10.1371/journal.ppat.1000134
47. Garcia E, Pion M, Pelchen-Matthews A, et al. HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic. Jun 2005;6(6):488-501. doi:10.1111/j.1600-0854.2005.00293.x
48. Relloso M, Puig-Kroger A, Pello OM, et al. DC-SIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-beta, and anti-inflammatory agents. J Immunol. Mar 15 2002;168(6):2634-43. doi:10.4049/jimmunol.168.6.2634
49. Puryear WB, Akiyama H, Geer SD, et al. Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169. PLoS Pathog. 2013;9(4):e1003291. doi:10.1371/journal.ppat.1003291
50. Hatch SC, Archer J, Gummuluru S. Glycosphingolipid composition of human immunodeficiency virus type 1 (HIV-1) particles is a crucial determinant for dendritic cell-mediated HIV-1 trans-infection. J Virol. Apr 2009;83(8):3496-506. doi:10.1128/JVI.02249-08
51. Izquierdo-Useros N, Blanco J, Erkizia I, et al. Maturation of blood-derived dendritic cells enhances human immunodeficiency virus type 1 capture and transmission. J Virol. Jul 2007;81(14):7559-70. doi:10.1128/JVI.02572-06
52. Perez-Zsolt D, Raich-Regue D, Munoz-Basagoiti J, et al. HIV-1 trans-Infection Mediated by DCs: The Tip of the Iceberg of Cell-to-Cell Viral Transmission. Pathogens. Dec 31 2021;11(1)doi:10.3390/pathogens11010039
53. Perez-Zsolt D, Cantero-Perez J, Erkizia I, et al. Dendritic Cells From the Cervical Mucosa Capture and Transfer HIV-1 via Siglec-1. Front Immunol. 2019;10:825. doi:10.3389/fimmu.2019.00825
54. Sewald X, Ladinsky MS, Uchil PD, et al. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. Science. Oct 30 2015;350(6260):563-567. doi:10.1126/science.aab2749
55. Akiyama H, Ramirez NG, Gudheti MV, Gummuluru S. CD169-mediated trafficking of HIV to plasma membrane invaginations in dendritic cells attenuates efficacy of anti-gp120 broadly neutralizing antibodies. PLoS Pathog. Mar 2015;11(3):e1004751. doi:10.1371/journal.ppat.1004751
56. Lore K, Smed-Sorensen A, Vasudevan J, Mascola JR, Koup RA. Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med. Jun 20 2005;201(12):2023-33. doi:10.1084/jem.20042413
57. Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci. 1999;96
58. Rappocciolo G, Piazza P, Fuller CL, et al. DC-SIGN on B lymphocytes is required for transmission of HIV-1 to T lymphocytes. PLoS Pathog. Jul 2006;2(7):e70. doi:10.1371/journal.ppat.0020070
59. Moir S, Malaspina A, Li Y, et al. B cells of HIV-1-infected patients bind virions through CD21-complement interactions and transmit infectious virus to activated T cells. J Exp Med. Sep 4 2000;192(5):637-46. doi:10.1084/jem.192.5.637
60. Malaspina A, Moir S, Nickle DC, et al. Human immunodeficiency virus type 1 bound to B cells: relationship to virus replicating in CD4+ T cells and circulating in plasma. J Virol. Sep 2002;76(17):8855-63. doi:10.1128/jvi.76.17.8855-8863.2002
61. Jakubik JJ, Saifuddin M, Takefman DM, Spear GT. Immune complexes containing human immunodeficiency virus type 1 primary isolates bind to lymphoid tissue B lymphocytes and are infectious for T lymphocytes. J Virol. Jan 2000;74(1):552-5. doi:10.1128/jvi.74.1.552-555.2000
62. Dopper S, Wilflingseder D, Prodinger WM, et al. Mechanism(s) promoting HIV-1 infection of primary unstimulated T lymphocytes in autologous B cell/T cell co-cultures. Eur J Immunol. Aug 2003;33(8):2098-107. doi:10.1002/eji.200323932
63. Jakubik JJ, Saifuddin M, Takefman DM, Spear GT. B lymphocytes in lymph nodes and peripheral blood are important for binding immune complexes containing HIV-1. Immunology. Apr 1999;96(4):612-9.
doi:10.1046/j.1365-2567.1999.00304.x
64. Schnittman SM, Lane HC, Greenhouse J, Justement JS, Baseler M, Fauci AS. Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc Natl Acad Sci U S A. Aug 1990;87(16):6058-62. doi:10.1073/pnas.87.16.6058
65. Zerbato JM, Serrao E, Lenzi G, et al. Establishment and Reversal of HIV-1 Latency in Naive and Central Memory CD4+ T Cells In Vitro. J Virol. Sep 15 2016;90(18):8059-73. doi:10.1128/JVI.00553-16
66. Zerbato JM, McMahon DK, Sobolewski MD, Mellors JW, Sluis-Cremer N. Naive CD4+ T Cells Harbor a Large Inducible Reservoir of Latent, Replication-competent Human Immunodeficiency Virus Type 1. Clin Infect Dis. Nov 13 2019;69(11):1919-1925. doi:10.1093/cid/ciz108
67. Venanzi Rullo E, Cannon L, Pinzone MR, Ceccarelli M, Nunnari G, O'Doherty U. Genetic Evidence That Naive T Cells Can Contribute Significantly to the Human Immunodeficiency Virus Intact Reservoir: Time to Re-evaluate Their Role. Clin Infect Dis. Nov 27 2019;69(12):2236-2237. doi:10.1093/cid/ciz378
68. Venanzi Rullo E, Pinzone MR, Cannon L, et al. Persistence of an intact HIV reservoir in phenotypically naive T cells. JCI Insight. Oct 15 2020;5(20)doi:10.1172/jci.insight.133157
69. Pinzone MR, Weissman S, Pasternak AO, Zurakowski R, Migueles S, O'Doherty U. Naive infection predicts reservoir diversity and is a formidable hurdle to HIV eradication. JCI Insight. Aug 23 2021;6(16)doi:10.1172/jci.insight.150794
70. Ostrowski MA, Chun TW, Justement SJ, et al. Both memory and CD45RA+/CD62L+ naive CD4(+) T cells are infected in human immunodeficiency virus type 1-infected individuals. J Virol. Aug 1999;73(8):6430-5.
71. Wightman F, Solomon A, Khoury G, et al. Both CD31(+) and CD31(-) naive CD4(+) T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy. J Infect Dis. Dec 1 2010;202(11):1738-48. doi:10.1086/656721
72. Margolis L, Shattock R. Selective transmission of CCR5-utilizing HIV-1: the 'gatekeeper' problem resolved? Nat Rev Microbiol. Apr 2006;4(4):312-7. doi:10.1038/nrmicro1387
73. Grivel JC, Shattock RJ, Margolis LB. Selective transmission of R5 HIV-1 variants: where is the gatekeeper? J Transl Med. Jan 27 2011;9 Suppl 1:S6. doi:10.1186/1479-5876-9-S1-S6
74. Crotty S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity. May 21 2019;50(5):1132-1148. doi:10.1016/j.immuni.2019.04.011
75. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. Oct 16 2014;41(4):529-42. doi:10.1016/j.immuni.2014.10.004
76. Cyster JG. B cell follicles and antigen encounters of the third kind. Nat Immunol. Nov 2010;11(11):989-96. doi:10.1038/ni.1946
77. Cyster JG, Allen CDC. B Cell Responses: Cell Interaction Dynamics and Decisions. Cell. Apr 18 2019;177(3):524-540. doi:10.1016/j.cell.2019.03.016
78. Xu Y, Phetsouphanh C, Suzuki K, et al. HIV-1 and SIV Predominantly Use CCR5 Expressed on a Precursor Population to Establish Infection in T Follicular Helper Cells. Front Immunol. 2017;8:376. doi:10.3389/fimmu.2017.00376
79. Bronnimann MP, Skinner PJ, Connick E. The B-Cell Follicle in HIV Infection: Barrier to a Cure. Front Immunol. 2018;doi:10.3389/
80. Rabezanahary H, Moukambi F, Palesch D, et al. Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol. Jan 2020;13(1):149-160. doi:10.1038/s41385-019-0221-x
81. Zaunders J, Xu Y, Kent SJ, Koelsch KK, Kelleher AD. Divergent Expression of CXCR5 and CCR5 on CD4(+) T Cells and the Paradoxical Accumulation of T Follicular Helper Cells during HIV Infection. Front Immunol. 2017;8:495. doi:10.3389/fimmu.2017.00495
82. Moukambi F, Rodrigues V, Fortier Y, et al. CD4 T Follicular Helper Cells and HIV Infection: Friends or Enemies? Front Immunol. 2017;8:135. doi:10.3389/fimmu.2017.00135
83. Perreau M, Savoye AL, De Crignis E, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med. Jan 14 2013;210(1):143-56. doi:10.1084/jem.20121932
84. Cannon G, Yi Y, Ni H, et al. HIV envelope binding by macrophage-expressed gp340 promotes HIV-1 infection. J Immunol. Aug 1 2008;181(3):2065-70. doi:10.4049/jimmunol.181.3.2065
85. Shen R, Richter HE, Clements RH, et al. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol. Apr 2009;83(7):3258-67. doi:10.1128/JVI.01796-08
86. Duncan CJ, Sattentau QJ. Viral determinants of HIV-1 macrophage tropism. Viruses. Nov 2011;3(11):2255-79. doi:10.3390/v3112255
87. Peressin M, Proust A, Schmidt S, et al. Efficient transfer of HIV-1 in trans and in cis from Langerhans dendritic cells and macrophages to autologous T lymphocytes. AIDS. Mar 13 2014;28(5):667-77. doi:10.1097/QAD.0000000000000193
88. Groot F, Welsch S, Sattentau QJ. Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood. May 1 2008;111(9):4660-3. doi:10.1182/blood-2007-12-130070
89. Nguyen DG, Hildreth JE. Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur J Immunol. Feb 2003;33(2):483-93. doi:10.1002/immu.200310024
90. Sharova N, Swingler C, Sharkey M, Stevenson M. Macrophages archive HIV-1 virions for dissemination in trans. EMBO J. Jul 6 2005;24(13):2481-9. doi:10.1038/sj.emboj.7600707
91. Soilleux EJ, Morris LS, Leslie G, et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol. Mar 2002;71(3):445-57.
92. Mikulak J, Teichberg S, Arora S, et al. DC-specific ICAM-3-grabbing nonintegrin mediates internalization of HIV-1 into human podocytes. Am J Physiol Renal Physiol. Sep 2010;299(3):F664-73. doi:10.1152/ajprenal.00629.2009
93. Rappocciolo G, Jais M, Piazza P, et al. Alterations in cholesterol metabolism restrict HIV-1 trans infection in nonprogressors. mBio. Apr 29 2014;5(3):e01031-13. doi:10.1128/mBio.01031-13
94. Hanley TM, Viglianti GA. Nuclear receptor signaling inhibits HIV-1 replication in macrophages through multiple trans-repression mechanisms. J Virol. Oct 2011;85(20):10834-50. doi:10.1128/JVI.00789-11
95. Hanley TM, Blay Puryear W, Gummuluru S, Viglianti GA. PPARgamma and LXR signaling inhibit dendritic cell-mediated HIV-1 capture and trans-infection. PLoS Pathog. Jul 1 2010;6(7):e1000981. doi:10.1371/journal.ppat.1000981
96. Graf EH, Mexas AM, Yu JJ, et al. Elite suppressors harbor low levels of integrated HIV DNA and high levels of 2-LTR circular HIV DNA compared to HIV+ patients on and off HAART. PLoS Pathog. Feb 2011;7(2):e1001300. doi:10.1371/journal.ppat.1001300
97. Kwaa AK, Garliss CC, Ritter KD, Laird GM, Blankson JN. Elite suppressors have low frequencies of intact HIV-1 proviral DNA. AIDS. Mar 15 2020;34(4):641-643. doi:10.1097/QAD.0000000000002474
98. Julg B, Pereyra F, Buzon MJ, et al. Infrequent recovery of HIV from but robust exogenous infection of activated CD4(+) T cells in HIV elite controllers. Clin Infect Dis. Jul 15 2010;51(2):233-8. doi:10.1086/653677
99. Izquierdo-Useros N, Naranjo-Gomez M, Archer J, et al. Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood. Mar 19 2009;113(12):2732-41. doi:10.1182/blood-2008-05-158642
100. Chiozzini C, Arenaccio C, Olivetta E, et al. Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4(+) T lymphocytes and reactivation of the HIV-1 reservoir. Arch Virol. Sep 2017;162(9):2565-2577. doi:10.1007/s00705-017-3391-4
101. Chen J, Li C, Li R, Chen H, Chen D, Li W. Exosomes in HIV infection. Curr Opin HIV AIDS. Sep 1 2021;16(5):262-270. doi:10.1097/COH.0000000000000694
102. Wiley RD, Gummuluru S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A. Jan 17 2006;103(3):738-43. doi:10.1073/pnas.0507995103
103. Patters BJ, Kumar S. The role of exosomal transport of viral agents in persistent HIV pathogenesis. Retrovirology. Dec 22 2018;15(1):79. doi:10.1186/s12977-018-0462-x
104. Izquierdo-Useros N, Naranjo-Gomez M, Erkizia I, et al. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog. Mar 26 2010;6(3):e1000740. doi:10.1371/journal.ppat.1000740
105. Menager MM, Littman DR. Actin Dynamics Regulates Dendritic Cell-Mediated Transfer of HIV-1 to T Cells. Cell. Feb 11 2016;164(4):695-709. doi:10.1016/j.cell.2015.12.036
106. Nikolic DS, Lehmann M, Felts R, et al. HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation. Blood. Nov 3 2011;118(18):4841-52. doi:10.1182/blood-2010-09-305417
107. Aggarwal A, Iemma TL, Shih I, et al. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog. 2012;8(6):e1002762. doi:10.1371/journal.ppat.1002762
108. Eugenin EA, Gaskill PJ, Berman JW. Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immunol. 2009;254(2):142-8. doi:10.1016/j.cellimm.2008.08.005
109. Hashimoto M, Bhuyan F, Hiyoshi M, et al. Potential Role of the Formation of Tunneling Nanotubes in HIV-1 Spread in Macrophages. J Immunol. Feb 15 2016;196(4):1832-41. doi:10.4049/jimmunol.1500845
110. Kadiu I, Gendelman HE. Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. J Neuroimmune Pharmacol. Dec 2011;6(4):658-75. doi:10.1007/s11481-011-9298-z
111. Kadiu I, Gendelman HE. Macrophage bridging conduit trafficking of HIV-1 through the endoplasmic reticulum and Golgi network. J Proteome Res. Jul 1 2011;10(7):3225-38. doi:10.1021/pr200262q
112. Zaccard CR, Watkins SC, Kalinski P, et al. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity. J Immunol. Feb 1 2015;194(3):1047-56. doi:10.4049/jimmunol.1401832
113. Jolly C, Kashefi K, Hollinshead M, Sattentau QJ. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med. Jan 19 2004;199(2):283-93. doi:10.1084/jem.20030648
114. Jolly C, Sattentau QJ. Retroviral spread by induction of virological synapses. Traffic. Sep 2004;5(9):643-50. doi:10.1111/j.1600-0854.2004.00209.x
115. Puigdomenech I, Massanella M, Izquierdo-Useros N, et al. HIV transfer between CD4 T cells does not require LFA-1 binding to ICAM-1 and is governed by the interaction of HIV envelope glycoprotein with CD4. Retrovirology. Mar 31 2008;5:32. doi:10.1186/1742-4690-5-32
116. McDonald D. Dendritic Cells and HIV-1 Trans-Infection. Viruses. Aug 2010;2(8):1704-17. doi:10.3390/v2081704
117. Kulpa DA, Brehm JH, Fromentin R, et al. The immunological synapse: the gateway to the HIV reservoir. Immunol Rev. Jul 2013;254(1):305-25. doi:10.1111/imr.12080
118. Gonzalez SM, Aguilar-Jimenez W, Su RC, Rugeles MT. Mucosa: Key Interactions Determining Sexual Transmission of the HIV Infection. Front Immunol. 2019;10:144. doi:10.3389/fimmu.2019.00144
119. Mbongue JC, Nieves HA, Torrez TW, Langridge WH. The Role of Dendritic Cell Maturation in the Induction of Insulin-Dependent Diabetes Mellitus. Front Immunol. 2017;8:327. doi:10.3389/fimmu.2017.00327
120. Hampton HR, Chtanova T. Lymphatic Migration of Immune Cells. Front Immunol. 2019;10:1168. doi:10.3389/fimmu.2019.01168
121. Louie DAP, Liao S. Lymph Node Subcapsular Sinus Macrophages as the Frontline of Lymphatic Immune Defense. Front Immunol. 2019;10:347. doi:10.3389/fimmu.2019.00347
122. de Winde CM, Munday C, Acton SE. Molecular mechanisms of dendritic cell migration in immunity and cancer. Med Microbiol Immunol. Aug 2020;209(4):515-529. doi:10.1007/s00430-020-00680-4
123. Gray EE, Cyster JG. Lymph node macrophages. J Innate Immun. 2012;4(5-6):424-36. doi:10.1159/000337007
124. Camara A, Lavanant AC, Abe J, et al. CD169(+) macrophages in lymph node and spleen critically depend on dual RANK and LTbetaR signaling. Proc Natl Acad Sci U S A. Jan 18 2022;119(3)doi:10.1073/pnas.2108540119
125. He B, Qiao X, Klasse PJ, et al. HIV-1 envelope triggers polyclonal Ig class switch recombination through a CD40-independent mechanism involving BAFF and C-type lectin receptors. J Immunol. Apr 1 2006;176(7):3931-41. doi:10.4049/jimmunol.176.7.3931
126. Borhis G, Trovato M, Chaoul N, Ibrahim HM, Richard Y. B-Cell-Activating Factor and the B-Cell Compartment in HIV/SIV Infection. Front Immunol. 2017;8:1338. doi:10.3389/fimmu.2017.01338
127. Banga R, Procopio FA, Noto A, et al. PD-1(+) and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat Med. Jul 2016;22(7):754-61. doi:10.1038/nm.4113
128. Weber JP, Fuhrmann F, Hutloff A. T-follicular helper cells survive as long-term memory cells. Eur J Immunol. Aug 2012;42(8):1981-8. doi:10.1002/eji.201242540