Double Screw-Line Technique of Anterior Scoliosis Correction with Thoracic Disc Releases for Thoracic Curves > 65 Degrees: Surgical Techniques and Outcomes

Main Article Content

M. Darryl Antonacci, MD Anthony Yung, MMSc Ashleigh Kozicz, MPH/PA-C Janet Cerrone, PA-C Christopher L. Antonacci, MD Yashvi Verma Madeline Sweeney, APN Laury A. Cuddihy, MD Randal R. Betz, MD

Abstract

Anterior Scoliosis Correction (ASC) is the proprietary technique of the authors and is an anterior spinal “de-tethering” technique using multiple flexible rod-cords and multiple screw constructs. It is performed through a modified anterior fusion approach that is a muscle-sparing mini-thoracotomy. ASC is the multi-year (since 2013), multi-generational modification of the original anterior vertebral body tethering procedure but includes preservation of the segmental arteries and incorporates multilevel releasing techniques of the contracted anterior longitudinal ligament and annular disc complex. Because of this, ASC, unlike vertebral body tethering, has been shown to derotate the hypokyphotic scoliotic spine effectively towards a more normal thoracic kyphosis and is not restricted to small curves or pediatric patients with growth remaining as is vertebral body tethering.


We retrospectively reviewed all 309 ASC procedures performed between September 2017 and August 2020, and 26 patients met the inclusion criteria (adolescent idiopathic scoliosis and at least a thoracic operative curve with severe coronal curve angles between 66° and 90°, double screw and rod-cord construct, and minimum 2-year follow-up).


The results of ASC on severe curves showed an average curve correction of 78.4% in thoracic and 71.2% in lumbar curves in the instrumented curves. Anterior longitudinal ligament and annular disc complex releases were performed on all patients having thoracic curves to help obtain adequate correction. An average of 4.1 discs per patient were released, all in the thoracic region. Clinical success with residual curves ≤ 35° was 96% (25/26 curves) in all patients and 92.3% in patients with curves ≤ 30° (24/26 curves). Three-dimensional (3D) thoracic kyphosis corrected an average of 39° from preoperative hypokyphosis of -4° to 35° postoperatively. There were no revisions performed in this group of patients.


In conclusion, Anterior Scoliosis Correction has potential expanded indications and increased ability to correct severe curves (> 65°) in patients with adolescent idiopathic scoliosis as compared to vertebral body tethering.

Keywords: Anterior Scoliosis Correction, Adolescent Idiopathic Scoliosis, Anterior Vertebral Body Tethering, Kyphosis Restoration, Severe Curve

Article Details

How to Cite
ANTONACCI, M. Darryl et al. Double Screw-Line Technique of Anterior Scoliosis Correction with Thoracic Disc Releases for Thoracic Curves > 65 Degrees: Surgical Techniques and Outcomes. Medical Research Archives, [S.l.], v. 11, n. 7.1, july 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4095>. Date accessed: 15 may 2024. doi: https://doi.org/10.18103/mra.v11i7.1.4095.
Section
Research Articles

References

1. Newton PO, Fricka KB, Lee SS, Farnsworth CL, Cox TG, Mahar AT. Asymmetrical flexible tethering of spine growth in an immature bovine model. Spine (Phila Pa 1976). 2002;27(7):689-93.

2. Betz RR, Antonacci MD, Cuddihy LA. Alternatives to spinal fusion surgery in pediatric deformity. Curr Orthop Pract. 2018;29:430-5.

3. Newton PO, Faro FD, Farnsworth CL, Shapiro GS, Mohamad F, Parent S, et al. Multilevel spinal growth modulation with an anterolateral flexible tether in an immature bovine model. Spine (Phila Pa 1976). 2005;30(23):2608-13.

4. Danielsson AJ, Romberg K, Nachemson AL. Spinal range of motion, muscle endurance, and back pain and function at least 20 years after fusion or brace treatment for adolescent idiopathic scoliosis: a case-control study. Spine (Phila Pa 1976). 2006;31(3):275-83.

5. Kepler CK, Meredith DS, Green DW, Widmann RF. Long-term outcomes after posterior spine fusion for adolescent idiopathic scoliosis. Curr Opin Pediatr. 2012;24(1):68-75.

6. Samdani AF, Ames RJ, Kimball JS, Pahys JM, Grewal G, Pelletier GJ, et al. Anterior vertebral body tethering for idiopathic scoliosis: two-year results. Spine (Phila Pa 1976). 2014;39(20):1688-93.

7. Samdani AF, Ames RJ, Kimball JS, Pahys JM, Grewal H, Pelletier GJ, et al. Anterior vertebral body tethering for immature adolescent idiopathic scoliosis: one-year results on the first 32 patients. Eur Spine J. 2015;24(7):1533-9.

8. Green DW, Lawhome 3rd TW, Widmann RF, Kepler CK, Ahern C, Mintz DN, et al. Long-term magnetic resonance imaging follow-up demonstrates minimal transitional level lumbar disc degeneration after posterior spine fusion for adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2011; 36(23):1948-54. http://dx.doi.org/10.1097/BRS.0b013e3181ff1ea9.

9. Helenius I, Remes V, Yrjonen T, Ylikoski M, Schlenzka D, Helenius M, et al. Harrington and Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis. Long-term functional and radiographic outcomes. J Bone Joint Surg Am. 2003;85(12):2303-9.

10. Helenius L, Diarbakerli E, Grauers A, Lastikka M, Oksanen H, Pajulo O, et al. Back pain and quality of life after surgical treatment for adolescent idiopathic scoliosis at 5-year follow-up: comparison with healthy controls and patients with untreated idiopathic scoliosis. J Bone Joint Surg Am. 2019;101(16):1460-6. http://dx.doi.org/10.2106/JBJS.18.01370.

11. Miyanji F, Pawelek J, Nasto LA, Parent S. A prospective, multicenter analysis of the efficacy of anterior vertebral body tethering (AVBT) in the treatment of idiopathic scoliosis [abstract]. Spine Deform. 2018;6:820.

12. Newton PO, Kluck DG, Saito W, Yaszay B, Bartley CE, Bastrom TP. Anterior spinal growth tethering for skeletally immature patients with scoliosis: a retrospective look two to four years postoperatively. J Bone Joint Surg Am. 2018;100(19):1691-7. http://dx.doi.org/10.2106/JBJS.18.00287.

13. Newton PO, Farnsworth CL, Faro FD, Mahar AT, Odell TR, Mohamad F, et al. Spinal growth modulation with an anterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine (Phila Pa 1976). 2008;33:724-33.

14. Crawford 3rd CH, Lenke LG. Growth modulation by means of anterior tethering resulting in progressive correction of juvenile idiopathic scoliosis: a case report. J Bone Joint Surg Am. 2010;92(1):202-9.

15. Lavelle WF, Moldavsky M, Cai Y, Ordway NR, Bucklen BS. An initial biomechanical investigation of fusionless anterior tether constructs for controlled scoliosis correction. Spine J. 2016;16(3):408-13. http://dx.doi.org/10.1016/j.spinee.2015.11.004.

16. Antonacci CL, Antonacci MD, Bassett WP, Cerrone JL, Haas AR, Haoson DS, et al. Treatment of patients with scoliosis using a unique anterior scoliosis correction technique. Med Res Arch J. 2021;9(7). http://dx.doi.org/https://doi.org/10.18103/mra.v4i7.2463.

17. Cuddihy LA, Antonacci MD, Hussain AK, Vig KS, Mulcahey MJ, Betz RR. Progressive neuromuscular scoliosis secondary to spinal cord injury in a young patient treated with nonfusion anterior scoliosis correction. Top Spinal Cord Inj Rehabil. 2019;25(2):150-6. http://dx.doi.org/10.1310/sci2502-150.

18. Cuddihy LA, Antonacci MD, Vig KS, Hussain AK, Leven D, Betz RR. Progressive double major scoliotic curve with concurrent lumbosacral spondylolisthesis in a skeletally immature patient with Marfan syndrome treated with anterior scoliosis correction. Spine Deform. 2020;8(1):139-46. http://dx.doi.org/10.1007/s43390-020-00031-6.

19. Parvaresh KC, Osborn EJ, Reighard FG, Doan J, Bastrom TP, Newton PO. Predicting 3D thoracic kyphosis using traditional 2D radiographic measurements in adolescent idiopathic scoliosis. Spine Deform. 2017; 5(3):159-65. http://dx.doi.org/10.1016/j.jspd.2016.12.002.

20. Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV. Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. JAMA. 2003;289(5):559-67.

21. Samdani AF, Pahys JM, Ames RJ, Grewal H, Pelletier GJ, Hwang SW, et al. Prospective follow-up report on anterior vertebral body tethering for idiopathic scoliosis: interim results from an FDA IDE study. J Bone Joint Surg Am. 2021;103(17):1611-9. http://dx.doi.org/10.2106/JBJS.20.01503.

22. Hoernschemeyer DG, Boeyer ME, Robertson ME, Loftis CM, Worley JR, Tweedy NM, et al. Anterior vertebral body tethering for adolescent scoliosis with growth remaining: a retrospective review of 2 to 5-year postoperative results. J Bone Joint Surg Am. 2020;102(13):1169-76. http://dx.doi.org/10.2106/JBJS.19.00980.

23. Newton PO, Bartley CE, Bastrom TP, Kluck DG, Saito W, Yaszay B. Anterior spinal growth modulation in skeletally immature patients with idiopathic scoliosis: a comparison with posterior spinal fusion at 2 to 5 years postoperatively. J Bone Joint Surg Am. 2020;102(9):769-77. http://dx.doi.org/10.2106/JBJS.19.01176.

24. Miyanji F, Pawelek J, Nasto LA, Rushton P, Simmonds A, Parent S. Safety and efficacy of anterior vertebral body tethering in the treatment of idiopathic scoliosis. Bone Joint J. 2020;102-B(12):1703-8. http://dx.doi.org/10.1302/0301-620X.102B12.BJJ-2020-0426.R1.

25. Rushton PRP, Nasto L, Parent S, Turgeon I, Aldebeyan S, Miyanji F. Anterior vertebral body tethering for treatment of idiopathic scoliosis in the skeletally immature: results of 112 cases. Spine (Phila Pa 1976). 2021; 46(21):1461-7.

26. Trobisch PD, Baroncini A. Preliminary outcomes after vertebral body tethering (VBT) for lumbar curves and subanalysis of a 1- versus 2-tether construct. Eur Spine J. 2021; 30:3570-6. http://dx.doi.org/10.1007/s00586-021-07009-6.

27. Cuddihy LA, Swiercz M, Antonacci C, Betz R, Antonacci M. Predicting the major coronal curve angle on initial standing x-rays based on intraoperative correction during anterior scoliosis correction and vertebral body tethering: comparison of single vs. double cord/screw constructs [abstract]. 28th International Meeting on Advanced Spine Techniques; April 23-25, 2021 (virtual).

28. Pehlivanoglu T, Oltulu I, Erdag Y, Korkmaz E, Sarioglu E, Ofluoglu E, et al. Double-sided vertebral body tethering of double adolescent idiopathic scoliosis curves: radiographic outcomes of the first 13 patients with 2 years of follow-up. Eur Spine J. 2021;30(7):1896-904. http://dx.doi.org/10.1007/s00586-021-06745-z.

29. Kelly DM, McCarthy RE, McCullough FL, Kelly HR. Long-term outcomes of anterior spinal fusion with instrumentation for thoracolumbar and lumbar curves in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2010;35(2):194-8.

30. Sucato DJ, Agrawal S, O'Brien MF, Lowe TG, Richards BS, Lenke L. Restoration of thoracic kyphosis after operative treatment of adolescent idiopathic scoliosis: a multicenter comparison of three surgical approaches. Spine (Phila Pa 1976). 2008;33(24):2630-6.

31. Sitoula P, Verma K, Holmes Jr L, Gabos PG, Sanders JO, Yorgova P, et al. Prediction of curve progression in idiopathic scoliosis: validation of the Sanders skeletal maturity staging system. Spine (Phila Pa 1976). 2015;40(13):1006-13.

32. Zhu F, Qiu X, Liu S, Cheung KM. Minimum 3-year experience with vertebral body tethering for treating scoliosis: A systematic review and single-arm meta-analysis. J Orthop Surg (Hong Kong). 2022;30(3):10225536221137753. http://dx.doi.org/10.1177/10225536221137753.

33. Buyuk AF, Milbrandt TA, Mathew SE, Larson AN. Measurable thoracic motion remains at 1 year following anterior vertebral body tethering, with sagittal motion greater than coronal motion. J Bone Joint Surg Am. 2021;103(24):2299-305. http://dx.doi.org/10.2106/JBJS.20.01533.

34. Newton PO, Parent S, Miyanji F, Alanay A, Lonner BS, Neal KM, et al. Anterior vertebral body tethering compared with posterior spinal fusion for major thoracic curves: a retrospective comparison by the Harms Study Group. J Bone Surg Am 2022;104(24):2170-7. http://dx.doi.org/10.2106/JBJS.22.00127.