Minimum Ganglion Cell Layer Thickness is the Best Structural Predictor of Visual Function in Leber Hereditary Optic Neuropathy
Main Article Content
Abstract
Background: Patients with Leber hereditary optic neuropathy, a genetic cause of severe optic atrophy and blindness, demonstrate characteristic structural changes measurable through optical coherence tomography, including initial swelling of the retinal nerve fiber layer and progressive thinning of the ganglion cell layer. After symptomatic conversion, patients experience progressive vision loss, often with dense central scotomas.
Aims: This study aims to explore the predictive potential of ocular structural measurements to visual function in patients with Leber hereditary optic neuropathy.
Methods: Medical records were reviewed retrospectively for patients with Leber hereditary optic neuropathy clinical testing. Structural measurements, including the average thickness of the ganglion cell layer, the retinal nerve fiber layer, and minimum thickness of the ganglion cell layer, measured through optical coherence tomography were obtained along with measures of visual function such as visual acuity and mean deviation of visual field testing. Simple and multivariable linear regressions were performed to determine correlations between structural measurements and visual functions. Analyses were conducted for all patients, and subgroup of symptomatic patients.
Results: Overall, 92 eyes were included with 78 symptomatic eyes. Across all patients, the minimum ganglion cell layer thickness had the highest correlation coefficient with visual acuity (Beta -0.632, adjusted R2 0.396) and with visual field function (Beta 0.572, adj. R2 0.320) compared to the average thickness of the ganglion cell layer (Beta 0.474, adj. R2 0.216) and retinal nerve fiber layer (Beta 0.481, adj. R2 0.223). In multivariate analysis, the minimum ganglion cell layer thickness was the only significant measurement that correlated with visual acuity across all eyes (Beta -0.527, P<0.001) and symptomatic eyes (Beta -0.479, P<0.001). The minimum ganglion cell layer thickness (Beta 0.440, P<0.001) and retinal nerve fiber layer average thickness (0.258, P=0.023) were significant structural measurements correlating to visual field function.
Conclusion: The minimum ganglion cell layer thickness is the best structural measure predictor for visual field and visual acuity compared to other common structural measurements in patients with Leber hereditary optic neuropathy. It is a good predictor even when evaluating only symptomatic eyes. Additional attention toward the minimum ganglion cell layer thickness may offer further insight into a patient’s visual potential and the natural history of this disease.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Pemp B, Mitsch C, Kircher K, Reitner A. Changes in Visual Function and Correlations with Inner Retinal Structure in Acute and Chronic Leber’s Hereditary Optic Neuropathy Patients after Treatment with Idebenone. J Clin Med. 2021;10(1):151. doi:10.3390/jcm10010151
3. Zhang Y, Huang H, Wei S, et al. Characterization of macular thickness changes in Leber’s hereditary optic neuropathy by optical coherence tomography. BMC Ophthalmol. 2014;14:105. doi:10.1186/1471-2415-14-105
4. Yu-Wai-Man P, Newman NJ, Carelli V, et al. Natural history of patients with Leber hereditary optic neuropathyresults from the REALITY study. Eye. 2022;36(4):818-826. doi:10.1038/s41433-021-01535-9
5. Balducci N, Savini G, Cascavilla ML, et al. Macular nerve fibre and ganglion cell layer changes in acute Leber’s hereditary optic neuropathy. Br J Ophthalmol. 2016;100(9):1232-1237. doi:10.1136/bjophthalmol-2015-307326
6. Nikoskelainen E, Hoyt WF, Nummelin K. Ophthalmoscopic Findings in Leber’s Hereditary Optic Neuropathy: I. Fundus Findings in Asymptomatic Family Members. Arch Ophthalmol. 1982;100(10):1597-1602. doi:10.1001/archopht.1982.01030040575003
7. Nikoskelainen E, Hoyt WF, Nummelin K. Ophthalmoscopic Findings in Leber’s Hereditary Optic Neuropathy: II. The Fundus Findings in the Affected Family Members. Arch Ophthalmol. 1983;101(7):1059-1068. doi:10.1001/archopht.1983.01040020061011
8. Nikoskelainen E, Hoyt WF, Nummelin K, Schatz H. Fundus Findings in Leber’s Hereditary Optic Neuroretinopathy: III. Fluorescein Angiographic Studies. Arch Ophthalmol. 1984;102(7):981-989. doi:10.1001/archopht.1984.01040030783017
9. Hwang TJ, Karanjia R, Moraes-Filho MN, et al. Natural History of Conversion of Leber’s Hereditary Optic Neuropathy: A Prospective Case Series. Ophthalmology. 2017;124(6):843-850. doi:10.1016/j.ophtha.2017.01.002
10. Hedges TR, Gobuty M, Manfready RA, Erlich-Malona N, Monaco C, Mendoza-Santiesteban CE. The Optical Coherence Tomographic Profile of Leber Hereditary Optic Neuropathy. Neuro-Ophthalmol. 2016;40(3):107-112. doi:10.3109/01658107.2016.1173709
11. Barboni P, Savini G, Feuer WJ, et al. Retinal nerve fiber layer thickness variability in Leber hereditary optic neuropathy carriers. Eur J Ophthalmol. 2012;22(6):985-991. doi:10.5301/ejo.5000154
12. Majander A, Robson AG, João C, et al. The pattern of retinal ganglion cell dysfunction in Leber hereditary optic neuropathy. Mitochondrion. 2017;36:138-149. doi:10.1016/j.mito.2017.07.006
13. Mashima Y, Kigasawa K, Shinoda K, Wakakura M, Oguchi Y. Visual prognosis better in eyes with less severe reduction of visual acuity one year after onset of Leber hereditary optic neuropathy caused by the 11,778 mutation. BMC Ophthalmol. 2017;17(1):192. doi:10.1186/s12886-017-0583-3
14. Holladay JT. Proper method for calculating average visual acuity. J Refract Surg Thorofare NJ 1995. 1997;13(4):388-391.
15. Bahr T, Welburn K, Donnelly J, Bai Y. Emerging model systems and treatment approaches for Leber’s hereditary optic neuropathy: Challenges and opportunities. Biochim Biophys Acta BBA - Mol Basis Dis. 2020;1866(6):165743. doi:10.1016/j.bbadis.2020.165743
16. Mwanza JC, Durbin MK, Budenz DL, et al. Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(11):7872-7879. doi:10.1167/iovs.11-7896
17. Takeuchi R, Murase K, Furukawa Y, Furukawa S, Hayashi K. Stimulation of nerve growth factor synthesis/secretion by 1,4-benzoquinone and its derivatives in cultured mouse astroglial cells. FEBS Lett. 1990;261(1):63-66. doi:10.1016/0014-5793(90)80637-x