A 15 Year Evolution of Dichloroacetate-Based Metabolic Cancer Therapy: A Review with Case Reports

Main Article Content

Akbar Khan, MD, IMD, DHS, FAAO Mitchell Ghen, DO, PhD

Abstract

Despite Otto Warburg’s discovery of aerobic glycolysis in cancer cells in the 1920’s, the potential for developing therapeutics that targeted cancer cell metabolism was essentially ignored until 2007 when a groundbreaking publication was released from a group of Canadian researchers. Bonnet et al. (who paradoxically were not specialized in oncology) discovered that the generic drug dichloroacetate sodium (“DCA”) could reverse the Warburg phenotype in cancer cells in vitro and in vivo resulting in natural cancer cell suicide and tumour shrinkage in rats. This phenomenon was previously thought to be impossible as it was believed that mitochondria in malignant cells were permanently altered and unable to trigger apoptosis. Despite the fact that no large clinical trial of DCA as a cancer therapy was ever completed, a small number of doctors in North America and Europe rapidly translated this new knowledge into clinical cancer protocols through independent observational research and creative thinking.


Since off-label drug use is permitted in most jurisdictions, clinicians initially began to use DCA in patients who had failed all conventional therapies. Over the years, further novel anti-cancer mechanisms of DCA were discovered such as angiogenesis inhibition, immune activation and cancer stem cell targeting. Around 2011, the work of Seyfried (USA) began to illuminate the importance of glutamine inhibition and suggested that a multi-energetic targeted approach was superior to glycolysis inhibition alone.


A collaborative effort of the authors incorporating Seyfried’s concepts resulted in the creation of a new metabolic protocol named “MOMENTUM” (Metabolic, Oncologic, Multi-ENergetic Targeted, Universal, Modified). In this protocol, glucose and glutamine metabolism were targeted simultaneously with a combination of multiple natural and pharmacologic agents administered intravenously.  Surprising preliminary clinical results in several difficult cancer cases confirmed that metabolic multi-targeted methods are extremely promising, and more so than metabolic monotherapy. Life threatening side effects of this approach to cancer management are virtually non-existent and therapy costs are manageable.


A disappointing absence of industry funding for large clinical trials has not curtailed the development of the metabolic approach as a clinically viable methodology, proving that unadulterated medical science can conquer the ongoing push for multibillion-dollar economic reward.

Keywords: dichloroacetate, cancer, glycolysis, Warburg, glutamine, mitochondria, metabolic, apoptosis

Article Details

How to Cite
KHAN, Akbar; GHEN, Mitchell. A 15 Year Evolution of Dichloroacetate-Based Metabolic Cancer Therapy: A Review with Case Reports. Medical Research Archives, [S.l.], v. 11, n. 7.2, july 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4118>. Date accessed: 20 jan. 2025. doi: https://doi.org/10.18103/mra.v11i7.2.4118.
Section
Review Articles

References

1. Otto Warburg, Franz Wind, Erwin Negelein. The Metabolism of Tumors in the Body. J Gen Physiol. 1927 Mar 7; 8(6): 519–530. PMCID: PMC2140820
2. Institute of Medicine (US) Committee on Quality of Health Care in America. Crossing the Quality Chasm: A New Health System for the 21st Century. Washington (DC): National Academies Press (US); 2001.
3. Morgan G, et al. The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clin Oncol (R Coll Radiol). 2004. PMID: 15630849
4. Som P, Atkins HL, Bandoypadhyay D, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;21(7):670-675
5. Hardie DG. 100 years of the Warburg effect: a historical perspective. Endocr Relat Cancer. 2022;29(12):T1-T13. Published 2022 Oct 7. doi:10.1530/ERC-22-0173
6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
7. Bonnet S, Archer SL, Allalunis-Turner J, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11(1):37-51. doi:10.1016/j.ccr.2006.10.020
8. Stacpoole PW, Wright EC, Baumgartner TG, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N Engl J Med. 1992;327(22):1564-1569. doi:10.1056/NEJM199211263272204
9. Barshop BA, Naviaux RK, McGowan KA, et al. Chronic treatment of mitochondrial disease patients with dichloroacetate. Mol Genet Metab. 2004;83(1-2):138-149. doi:10.1016/j.ymgme.2004.06.009
10. Curry SH, Lorenz A, Chu PI, Limacher M, Stacpoole PW. Disposition and pharmacodynamics of dichloroacetate (DCA) and oxalate following oral DCA doses. Biopharm Drug Dispos. 1991;12(5):375-390. doi:10.1002/bdd.2510120507
11. Stacpoole PW, Kerr DS, Barnes C, et al. Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics. 2006;117(5):1519-1531. doi:10.1542/peds.2005-1226
12. DCA Therapy Data. Medicor Cancer Centres. https://medicorcancer.com/dca-therapy-data/ Last Updated: July 1, 2009. Accessed: Jun 1, 2023.
13. Pearson H. Cancer patients opt for unapproved drug. Nature. 2007;446(7135):474-475. doi:10.1038/446474a
14. Pan JG, Mak TW. Metabolic targeting as an anticancer strategy: dawn of a new era?. Sci STKE. 2007;2007(381):pe14. Published 2007 Apr 10. doi:10.1126/stke.3812007pe14
15. Flavin D. Medullary thyroid carcinoma relapse reversed with dichloroacetate: A case report. Oncol Lett. 2010;1(5):889-891. doi:10.3892/ol_00000158
16. Khan A. Use of oral dichloroacetate for palliation of leg pain arising from metastatic poorly differentiated carcinoma: a case report. J Palliat Med. 2011;14(8):973-977. doi:10.1089/jpm.2010.0472
17. Khan A, Marier D, Marsden E, Andrews D, Eliaz I. A novel form of dichloroacetate therapy for patients with advanced cancer: a report of 3 cases. Altern Ther Health Med. 2014 Oct;20 Suppl 2:21-8. PMID: 25362214.
18. Ishiguro T, Ishiguro R, Ishiguro M, Iwai S. Co-treatment of dichloroacetate, omeprazole and tamoxifen exhibited synergistically antiproliferative effect on malignant tumors: in vivo experiments and a case report. Hepatogastroenterology. 2012 Jun;59(116):994-6. doi: 10.5754/hge10507. PMID: 22580646.
19. Lea MA, Altayyar M, desBordes C. Inhibition of Growth of Bladder Cancer Cells by 3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one in Combination with Other Compounds Affecting Glucose Metabolism. Anticancer Res. 2015 Nov;35(11):5889-99. PMID: 26504012.
20. Ishiguro T, Ishiguro M, Ishiguro R, Iwai S. Cotreatment with dichloroacetate and omeprazole exhibits a synergistic antiproliferative effect on malignant tumors. Oncol Lett. 2012 Mar;3(3):726-728. doi: 10.3892/ol.2012.552. Epub 2012 Jan 3. PMID: 22740984; PMCID: PMC3362455.
21. Saito M, Yano K, Kamigaki T, Goto S. A patient with scirrhous stomach cancer treated with combination of hyperthermotherapy and 5-aminolevulinic acid (ALA). Anticancer Res. 2013 Jul;33(7):2957-63. PMID: 23780986.
22. Ruggieri V, Agriesti F, Scrima R, Laurenzana I, Perrone D, Tataranni T, Mazzoccoli C, Lo Muzio L, Capitanio N, Piccoli C. Dichloroacetate, a selective mitochondria-targeting drug for oral squamous cell carcinoma: a metabolic perspective of treatment. Oncotarget. 2015 Jan 20;6(2):1217-30. doi: 10.18632/oncotarget.2721. PMID: 25544754; PMCID: PMC4359228.
23. Agnoletto C, Melloni E, Casciano F, Rigolin GM, Rimondi E, Celeghini C, Brunelli L, Cuneo A, Secchiero P, Zauli G. Sodium dichloroacetate exhibits anti-leukemic activity in B-chronic lymphocytic leukemia (B-CLL) and synergizes with the p53 activator Nutlin-3. Oncotarget. 2014 Jun 30;5(12):4347-60. doi: 10.18632/oncotarget.2018. PMID: 24962518; PMCID: PMC4147328.
24. Su D, Lin Z. Dichloroacetate attenuates the stemness of hepatocellular carcinoma cells via promoting nucleus-cytoplasm translocation of YAP. Environ Toxicol. 2021 May;36(5):975-983. doi: 10.1002/tox.23098. Epub 2021 Jan 6. PMID: 33405312.
25. Flavin DF. Non-Hodgkin's Lymphoma Reversal with Dichloroacetate. J Oncol. 2010;2010:414726. doi: 10.1155/2010/414726. Epub 2010 Sep 16. PMID: 20886020; PMCID: PMC2945664.
26. Sun L, Moritake T, Ito K, Matsumoto Y, Yasui H, Nakagawa H, Hirayama A, Inanami O, Tsuboi K. Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets. PLoS One. 2017 Apr 20;12(4):e0176162. doi: 10.1371/journal.pone.0176162. PMID: 28426747; PMCID: PMC5398704.
27. Abildgaard C, Dahl C, Basse AL, Ma T, Guldberg P. Bioenergetic modulation with dichloroacetate reduces the growth of melanoma cells and potentiates their response to BRAFV600E inhibition. J Transl Med. 2014 Sep 3;12:247. doi: 10.1186/s12967-014-0247-5. PMID: 25182332; PMCID: PMC4156963.
28. Sanchez WY, McGee SL, Connor T, Mottram B, Wilkinson A, Whitehead JP, Vuckovic S, Catley L. Dichloroacetate inhibits aerobic glycolysis in multiple myeloma cells and increases sensitivity to bortezomib. Br J Cancer. 2013 Apr 30;108(8):1624-33. doi: 10.1038/bjc.2013.120. Epub 2013 Mar 26. PMID: 23531700; PMCID: PMC3668464.
29. Vella S, Conti M, Tasso R, Cancedda R, Pagano A. Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells. Int J Cancer. 2012 Apr 1;130(7):1484-93. doi: 10.1002/ijc.26173. Epub 2011 Aug 27. PMID: 21557214.
30. Khan A, Marier D, Marsden E, Andrews D, Eliaz I. A novel form of dichloroacetate therapy for patients with advanced cancer: a report of 3 cases. Altern Ther Health Med. 2014 Oct;20 Suppl 2:21-8. PMID: 25362214.
31. Saed GM, Fletcher NM, Jiang ZL, Abu-Soud HM, Diamond MP. Dichloroacetate induces apoptosis of epithelial ovarian cancer cells through a mechanism involving modulation of oxidative stress. Reprod Sci. 2011 Dec;18(12):1253-61. doi: 10.1177/1933719111411731. Epub 2011 Jun 23. PMID: 21701041.
32. Rajeshkumar NV, Yabuuchi S, Pai SG, De Oliveira E, Kamphorst JJ, Rabinowitz JD, Tejero H, Al-Shahrour F, Hidalgo M, Maitra A, Dang CV. Treatment of Pancreatic Cancer Patient-Derived Xenograft Panel with Metabolic Inhibitors Reveals Efficacy of Phenformin. Clin Cancer Res. 2017 Sep 15;23(18):5639-5647. doi: 10.1158/1078-0432.CCR-17-1115. Epub 2017 Jun 13. PMID: 28611197; PMCID: PMC6540110.
33. Harting T, Stubbendorff M, Willenbrock S, Wagner S, Schadzek P, Ngezahayo A, Murua Escobar HM, Nolte I. The effect of dichloroacetate in canine prostate adenocarcinomas and transitional cell carcinomas in vitro. Int J Oncol. 2016 Dec;49(6):2341-2350. doi: 10.3892/ijo.2016.3720. Epub 2016 Oct 5. PMID: 27748833.
34. Kinnaird A, Dromparis P, Saleme B, Gurtu V, Watson K, Paulin R, Zervopoulos S, Stenson T, Sutendra G, Pink DB, Carmine-Simmen K, Moore R, Lewis JD, Michelakis ED. Metabolic Modulation of Clear-cell Renal Cell Carcinoma with Dichloroacetate, an Inhibitor of Pyruvate Dehydrogenase Kinase. Eur Urol. 2016 Apr;69(4):734-744. doi: 10.1016/j.eururo.2015.09.014. Epub 2016 Feb 18. PMID: 26433571.
35. Jin J, Yuan P, Yu W, Lin J, Xu A, Xu X, Lou J, Yu T, Qian C, Liu B, Song J, Li L, Piao Y, Xie T, Shen Y, Tao H, Tang J. Mitochondria-Targeting Polymer Micelle of Dichloroacetate Induced Pyroptosis to Enhance Osteosarcoma Immunotherapy. ACS Nano. 2022 Jul 26;16(7):10327-10340. doi: 10.1021/acsnano.2c00192. Epub 2022 Jun 23. PMID: 35737477.
36. Khan A, Marier D, Marsden E, Andrews D, Eliaz I. A novel form of dichloroacetate therapy for patients with advanced cancer: a report of 3 cases. Altern Ther Health Med. 2014 Oct;20 Suppl 2:21-8. PMID: 25362214.
37. Coda DM, Lingua MF, Morena D, Foglizzo V, Bersani F, Ala U, Ponzetto C, Taulli R. SMYD1 and G6PD modulation are critical events for miR-206-mediated differentiation of rhabdomyosarcoma. Cell Cycle. 2015;14(9):1389-402. doi: 10.1080/15384101.2015.1005993. PMID: 25644430; PMCID: PMC4614043.
38. Badr MM, Qinna NA, Qadan F, Matalka KZ. Dichloroacetate modulates cytokines toward T helper 1 function via induction of the interleukin-12-interferon-γ pathway. Onco Targets Ther. 2014 Feb 7;7:193-201. doi: 10.2147/OTT.S56688. PMID: 24532971; PMCID: PMC3923616.
39. Lisha Bao, Tong Xu, Xixuan Lu, Ping Huang, Zongfu Pan, Minghua Ge. Metabolic Reprogramming of Thyroid Cancer Cells and Crosstalk in Their Microenvironment. Front. Oncol., 02 December 2021 Sec. Cancer Metabolism Volume 11 - 2021 | https://doi.org/10.3389/fonc.2021.773028
40. Wong JY, Huggins GS, Debidda M, Munshi NC, De Vivo I. Dichloroacetate induces apoptosis in endometrial cancer cells. Gynecol Oncol. 2008 Jun;109(3):394-402. doi: 10.1016/j.ygyno.2008.01.038. Epub 2008 Apr 18. PMID: 18423823; PMCID: PMC2735772.
41. Xie J, Wang BS, Yu DH, Lu Q, Ma J, Qi H, Fang C, Chen HZ. Dichloroacetate shifts the metabolism from glycolysis to glucose oxidation and exhibits synergistic growth inhibition with cisplatin in HeLa cells. Int J Oncol. 2011 Feb;38(2):409-17. doi: 10.3892/ijo.2010.851. Epub 2010 Dec 3. PMID: 21132264.
42. Guo JQ, Tang HY, Wang CD, Sang BT, Liu X, Yi FP, Liu GL, Wu XM. Influence of Dichloroacetate on Wilms'Tumor in vitro. Ann Clin Lab Sci. 2022 Jan;52(1):101-108. PMID: 35181623.
43. Cao W, Yacoub S, Shiverick KT, et al. Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation. Prostate. 2008;68(11):1223-1231. doi:10.1002/pros.20788
44. Shavit R, Ilouze M, Feinberg T, Lawrence YR, Tzur Y, Peled N. Mitochondrial induction as a potential radio-sensitizer in lung cancer cells - a short report. Cell Oncol (Dordr). 2015;38(3):247-252. doi:10.1007/s13402-014-0212-6
45. Tong J, Xie G, He J, Li J, Pan F, Liang H. Synergistic antitumor effect of dichloroacetate in combination with 5-fluorouracil in colorectal cancer. J Biomed Biotechnol. 2011;2011:740564. doi:10.1155/2011/740564
46. Garon EB, Christofk HR, Hosmer W, et al. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 2014;140(3):443-452. doi:10.1007/s00432-014-1583-9
47. Dai Y, Xiong X, Huang G, et al. Dichloroacetate enhances adriamycin-induced hepatoma cell toxicity in vitro and in vivo by increasing reactive oxygen species levels. PLoS One. 2014;9(4):e92962. Published 2014 Apr 11. doi:10.1371/journal.pone.0092962
48. Khan, A. Case Report of Long Term Complete Remission of Metastatic Renal Squamous Cell Carcinoma after Palliative Radiotherapy and Adjuvant Dichloroacetate. Advances in Cancer Research & Treatment, Volume 2012 (2012), Article ID 441895, 7 pages, DOI: 10.5171/2012.441895, Published date:19 July 2012
49. Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A, Parker JM, McMurtry MS, Michelakis ED. Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene. 2013 Mar 28;32(13):1638-50. doi: 10.1038/onc.2012.198. Epub 2012 May 21. PMID: 22614004.
50. Ohashi T, Akazawa T, Aoki M, Kuze B, Mizuta K, Ito Y, Inoue N. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int J Cancer. 2013 Sep 1;133(5):1107-18. doi: 10.1002/ijc.28114. Epub 2013 Mar 16. PMID: 23420584.
51. Tataranni T, Agriesti F, Pacelli C, Ruggieri V, Laurenzana I, Mazzoccoli C, Sala GD, Panebianco C, Pazienza V, Capitanio N, Piccoli C. Dichloroacetate Affects Mitochondrial Function and Stemness-Associated Properties in Pancreatic Cancer Cell Lines. Cells. 2019 May 18;8(5):478. doi: 10.3390/cells8050478. PMID: 31109089; PMCID: PMC6562462.
52. Khan A, Andrews D, Blackburn AC. Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy. World J Clin Cases. 2016 Oct 16;4(10):336-343. doi: 10.12998/wjcc.v4.i10.336. PMID: 27803917; PMCID: PMC5067498.
53. Khan A, Andrews D, Shainhouse J, Blackburn AC. Long-term stabilization of metastatic melanoma with sodium dichloroacetate. World J Clin Oncol. 2017 Aug 10;8(4):371-377. doi: 10.5306/wjco.v8.i4.371. PMID: 28848705; PMCID: PMC5554882.
54. Ishiguro T, Ishiguro R, Ishiguro M, Iwai S. Co-treatment of dichloroacetate, omeprazole and tamoxifen exhibited synergistically antiproliferative effect on malignant tumors: in vivo experiments and a case report. Hepatogastroenterology. 2012 Jun;59(116):994-6. doi: 10.5754/hge10507. PMID: 22580646.
55. Khan A, Andrews D, Shainhouse J, Blackburn AC. Long-term stabilization of metastatic melanoma with sodium dichloroacetate. World J Clin Oncol. 2017 Aug 10;8(4):371-377. doi: 10.5306/wjco.v8.i4.371. PMID: 28848705; PMCID: PMC5554882.
56. Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer. 2003 Oct 6;89(7):1375-82. doi: 10.1038/sj.bjc.6601269. PMID: 14520474; PMCID: PMC2394295.
57. Mukherjee P, Augur ZM, Li M, et al. Therapeutic benefit of combining calorie-restricted ketogenic diet and glutamine targeting in late-stage experimental glioblastoma. Commun Biol. 2019;2:200. Published 2019 May 29. doi:10.1038/s42003-019-0455-x
58. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427-433. doi:10.1016/j.tibs.2010.05.003
59. Mattaini KR, Sullivan MR, Vander Heiden MG. The importance of serine metabolism in cancer. J Cell Biol. 2016;214(3):249-257. doi:10.1083/jcb.201604085
60. Albaugh VL, Pinzon-Guzman C, Barbul A. Arginine-Dual roles as an onconutrient and immunonutrient. J Surg Oncol. 2017;115(3):273-280. doi:10.1002/jso.24490
61. Wilkins HM, Harris JL, Carl SM, et al. Oxaloacetate activates brain mitochondrial biogenesis, enhances the insulin pathway, reduces inflammation and stimulates neurogenesis. Hum Mol Genet. 2014;23(24):6528-6541.
62. Boyko M, Melamed I, Gruenbaum BF, et al. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics. 2012;9(3):649-657. doi:10.1007/s13311-012-0129-6
63. Wiese EK, Hitosugi S, Loa ST, et al. Enzymatic activation of pyruvate kinase increases cytosolic oxaloacetate to inhibit the Warburg effect. Nat Metab. 2021;3(7):954-968.
64. Zlotnik A, Gruenbaum SE, Artru AA, et al. The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity: evidence from the use of maleate. J Neurosurg Anesthesiol. 2009;21(3):235-241.
65. Goldshmit Y, Perelroizen R, Yakovchuk A, et al. Blood glutamate scavengers increase pro-apoptotic signaling and reduce metastatic melanoma growth in-vivo. Sci Rep. 2021;11(1):14644.
66. Zlotnik A, Gurevich B, Tkachov S, et al. Brain neuroprotection by scavenging blood glutamate. Exp Neurol. 2007;203(1):213-220.
67. Cash A, Kaufman DL. Oxaloacetate Treatment For Mental And Physical Fatigue In Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long-COVID fatigue patients: a non-randomized controlled clinical trial. J Transl Med. 2022;20(1):295. Published 2022 Jun 28. doi:10.1186/s12967-022-03488-3
68. Williams DS, Cash A, Hamadani L, et al. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell. 2009;8(6):765-768.
69. Ruban A, Berkutzki T, Cooper I, et al. Blood glutamate scavengers prolong the survival of rats and mice with brain-implanted gliomas. Invest New Drugs. 2012.
70. Augur ZM, Doyle CM, Li M, et al. Nontoxic Targeting of Energy Metabolism in Preclinical VM-M3 Experimental Glioblastoma. Front Nutr. 2018;5:91.
71. Kesari S. Oxaloacetate experience in brain cancer patients. Personal Communication. 2013.
72. Cash A, Kaufman DL. Oxaloacetate Treatment For Mental And Physical Fatigue In Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long-COVID fatigue patients: a non-randomized controlled clinical trial. J Transl Med. 2022;20(1):295. Published 2022 Jun 28. doi:10.1186/s12967-022-03488-3
73. Tully L, Humiston J, Cash A. Oxaloacetate reduces emotional symptoms in premenstrual syndrome (PMS): results of a placebo-controlled, cross-over clinical trial. Obstet Gynecol Sci. 2020;63(2):195-204. doi:10.5468/ogs.2020.63.2.195
74. Stakišaitis D, Juknevičienė M, Damanskienė E, Valančiūtė A, Balnytė I, Alonso MM. The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo. Cancers (Basel). 2019 Aug 20;11(8):1210. doi: 10.3390/cancers11081210. PMID: 31434295; PMCID: PMC6721567.
75. Morandi F, Horenstein AL, Malavasi F. The Key Role of NAD+ in Anti-Tumor Immune Response: An Update. Front Immunol. 2021 Apr 15;12:658263. doi: 10.3389/fimmu.2021.658263. PMID: 33936090; PMCID: PMC8082456.
76. Bocci V. Ozonization of blood for the therapy of viral diseases and immunodeficiencies. A hypothesis. Med Hypotheses. 1992 Sep;39(1):30-4. doi: 10.1016/0306-9877(92)90136-z. PMID: 1435389.
77. Stanley WC, Meadows SR, Kivilo KM, Roth BA, Lopaschuk GD. beta-Hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content. Am J Physiol Heart Circ Physiol. 2003 Oct;285(4):H1626-31. doi: 10.1152/ajpheart.00332.2003. PMID: 12969881.
78. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, Bornmann W, Duvvuri S, Taegtmeyer H, Andreeff M. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 2010 Jan;120(1):142-56. doi: 10.1172/JCI38942. Epub 2009 Dec 21. PMID: 20038799; PMCID: PMC2799198.
79. Babu E, Ramachandran S, CoothanKandaswamy V, Elangovan S, Prasad PD, Ganapathy V, Thangaraju M. Role of SLC5A8, a plasma membrane transporter and a tumor suppressor, in the antitumor activity of dichloroacetate. Oncogene. 2011 Sep 22;30(38):4026-37. doi: 10.1038/onc.2011.113. Epub 2011 Apr 18. PMID: 21499304; PMCID: PMC3140604.
80. Langaee TY, Zhong G, Li W, Hamadeh I, Solayman MH, McDonough CW, Stacpoole PW, James MO. The influence of human GSTZ1 gene haplotype variations on GSTZ1 expression. Pharmacogenet Genomics. 2015 May;25(5):239-45. doi: 10.1097/FPC.0000000000000129. PMID: 25738370; PMCID: PMC4382440.