Avcs-Sonr Pilot Study: N-Terminal Pro-Brain Natriuretic Peptide Inversely Correlates with Sonr Signal in Patients with Dilated Cardiomyopathy and Reduced Left Ventricular Ejection Fraction

Main Article Content

Juan J. Garcia Guerrero, MD Joaquín Fernández de la Concha Castañeda, MD Antonio Chacón Piñero, MD F. Javier Garcia Fernández, MD, PhD Nicasio Pérez Castellano, MD, PhD Juan José González Ferrer, MD, PhD Ignacio Fernández Lozano, MD Javier Moreno, MD Antonio Hernández Madrid, MD

Abstract

Background. Chronic heart failure is a very important public health problem, and brain natriuretic peptide monitoring may help in its management but faces important logistical problems. A readily available surrogate of brain natriuretic peptide would be of value in this field. We hypothesized that SonR measurements might be this brain natriuretic peptide surrogate.


Methods. Patients with chronic heart failure, left ventricular ejection fraction ≤ 30% and implanted with a cardiac resynchronization therapy defibrillator able to provide SonR values underwent monthly assessment of brain natriuretic peptide levels for 1 year. The relationship between brain natriuretic peptide levels and paired SonR values was evaluated.


Results. An inverse and highly significant relationship between brain natriuretic peptide levels and paired SonR values was obtained.


Conclusions. We found an inverse and significant relationship between SonR values and brain natriuretic peptide levels. This finding might lead to the use of SonR values to monitor treatment and preclude hospital admissions in patients with chronic heart failure.

Keywords: decompensated heart failure, myocardial contractility, right atrial SonR sensor

Article Details

How to Cite
GUERRERO, Juan J. Garcia et al. Avcs-Sonr Pilot Study: N-Terminal Pro-Brain Natriuretic Peptide Inversely Correlates with Sonr Signal in Patients with Dilated Cardiomyopathy and Reduced Left Ventricular Ejection Fraction. Medical Research Archives, [S.l.], v. 11, n. 7.2, july 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4169>. Date accessed: 15 may 2024. doi: https://doi.org/10.18103/mra.v11i7.2.4169.
Section
Research Articles

References

1. Njoroge JN, Teerlink JR. Pathophysiology and therapeutic approaches to acute decompensated heart failure. Circ Res. 2021;128:1468-1486. DOI: 10.1161/CIRCRESAHA.121.318186

2. Tinoco Mesquita E, Lagoeiro Jorge AJ, Morais Rabelo L, Vale Souza C Jr. Understanding hospitalization in patients with heart failure. Int J Cardiovasc Sci. 2017;30:81-90.
DOI: 10.5935/2359-4802.20160060

3. Ezekowitz JA, O'Meara E, McDonald MA, et al. 2017 Comprehensive Update of the Canadian Cardiovascular Society guidelines for the management of meart mailure. Can J Cardiol. 2017;33:1342-1433. DOI: 10.1016/j.cjca.2017.08.022

4. Cotter G, Moshkovitz Y, Kaluskia E, et al. The role of cardiac power and systemic vascular resistance in the pathophysiology and diagnosis of patients with acute congestive heart failure. Eur J Heart Fail. 2003;5:443-451.
DOI: 10.1016/s1388-9842(03)00100-4

5. Sacchi S, Paoletti Perini A, Attana P, et al. Assessment of myocardial montractility by SonR sensor in patients undergoing cardiac resynchronization therapy. PACE 2016;39:268-274. DOI: 10.1111/pace.12795

6. Zile MR, Bennett TD, Sutton MSJ, et al. Transition from chronic compensated to acute decompensated heart failure pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation. 2008;118:1433-1441.
DOI: 10.1161/CIRCULATIONAHA.108.783910

7. Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011; 377: 658-66. DOI: 10.1016/S0140-6736(11)60101-3

8. Abraham WT, Stevenson LW, Bourge RC, Lindenfeld JA, Bauman JG, Adamson PB. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet. 2016;387:453-61. DOI: 10.1016/S0140-6736(15)00723-0

9. Boehmer JP, Hariharan R, Devecchi FG, et al. Multisensor algorithm predicts heart failure events in patients with implanted devices. Results from the MultiSENSE study. J Am Coll Cardiol HF. 2017;5:216-25. DOI: 10.1016/j.jchf.2016.12.011

10. Jourdain P, Jondeau G, Funck F, et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure. The STARS-BNP Multicenter Study. J Am Coll Cardiol. 2007;49:1733-1739.
DOI: 10.1016/j.jacc.2006.10.081

11. Januzzi JL, Rehman SU, Mohammed AA, et al. Use of amino-terminal pro–B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol. 2011;58:1881-1889.
DOI: 10.1016/j.jacc.2011.03.072

12. Troughton RW, Frampton CM, Brunner-La Rocca HP, et al. Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient metaanalysis. Eur Heart J. 2014;35:1559-1567. DOI: 10.1093/eurheartj/ehu090

13. Felker GM, Anstrom KJ, Adams KF, et al. Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction. A randomized clinical trial. JAMA. 2017;318:713-720.
DOI: 10.1001/jama.2017.10565

14. Pufulete P, Maishman R, Dabner L, et al. B-type natriuretic peptide-guided therapy for heart failure (HF): a systematic review and meta-analysis of individual participant data (IPD) and aggregate data. Syst Rev. 2018;7:112. DOI: 10.1186/s13643-018-0776-8

15. McLellan J, Bankhead CR, Oke JL, Hobbs FDR, Taylor CJ, Perera R. Natriuretic peptide-guided treatment for heart failure: a systematic review and meta-analysis. BMJ Evid Based Med. 2020;25:33-37.
DOI: 10.1136/bmjebm-2019-111208

16. Mueller C, McDonald K, de Boer RA, et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 2019;21:715-731. DOI: 10.1002/ejhf.1494

17. Sacchi S, Contardi D, Pieragnoli P, Ricciardi G, Giomi A, Padeletti L. Hemodynamic Sensor in Cardiac Implantable Electric Devices: The endocardial acceleration technology. J Healthc Eng. 2013;4:453-464.
DOI: 10.1260/2040-2295.4.4.453

18. Ritter P, Delnoy PP, Padeletti L, et al. A randomized pilot study of optimization of cardiac resynchronization therapy in sinus rhythm patients using a peak endocardial acceleration sensor vs. standard methods. Europace. 2012;14:1324-1333. DOI: 10.1093/europace/eus059

19. Brugada J, Delnoy PP, Brachmann J, et al. Contractility sensor-guided optimization of cardiac resynchronization therapy: results from the RESPOND-CRT trial. Eur Heart J. 2017;38:730-738. DOI: 10.1093/eurheartj/ehw526