Vascular Cell Adhesion Molecule 1 and Adiponectin Receptor 1 in Plasma-Derived Extracellular Vesicles of Type 2 Diabetes Patients Adiponectin receptor 1 in plasma-derived extracellular vesicces
Main Article Content
Abstract
Background: Patients with diabetes are susceptible to accelerated vascular damage associated with increased circulating extracellular vesicles (EVs) from endothelial tissue. Adiponectin is a cytokine with anti-inflammatory and insulin-sensitivity properties decreased in the plasma of patients with type 2 diabetes (T2D). This study aimed to assess the content of receptor 1 for adiponectin (AdipoR1) in both total and endothelial EVs from plasma samples of T2D patients and normoglycemic subjects.
Methods: Insulin and soluble vascular endothelial molecule-1 (sVCAM-1) in plasma were measured by ELISA, and we used flow cytometry to determine the content of AdipoR1, CD106, and CD144 in plasma-derived EVs from 14 patients with diabetes and 34 normoglycemic subjects.
Results: Compared to normoglycemic subjects, the percentage of vesicles CD144+ (p = 0.0041) and CD106+ (p = 0.0011) were higher in patients with diabetes. Compared to T2D patients, the percentage and medium fluorescence intensity from the total EVs/AdipoR1+ (p = 0.041 and p = 0.0220) were higher in normoglycemic subjects. Plasmatic sVCAM-1 was negatively correlated with plasma adiponectin (b = - 14.415, p < 0.0001), along with the percentage of EVs/AdipoR1+ (b = - 8.209, p = 0.001); and correlated positively with the percentage of EVs/CD144+ (b = 6.768, p < 0.0001) and HOMA-IR (b = 67.919, p < 0.0001).
Conclusions: Our results show that the content of AdipoR1 in plasma-derived VEs is lower in patients with T2D than in subjects with normoglycemic. AdipoR1 content in EVs is negatively associated with the endothelial damage marker sVCAM-1 level in plasma and with the HOMA-IR value.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Hirako S. Adiponectin. Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research. Published online January 1, 2016:308-e34B-5. doi:10.1016/B978-0-12-801028-0.00192-6
3. Fang H, Judd RL. Adiponectin Regulation and Function. Compr Physiol. 2018;8(3):1031-1063. doi:10.1002/CPHY.C170046
4. Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther. 2022;232:108008. doi:10.1016/J.PHARMTHERA.2021.108008
5. Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol. 2019;234(6):8152-8161. doi:10.1002/JCP.27603
6. Dini L, Tacconi S, Carata E, Tata AM, Vergallo C, Panzarini E. Microvesicles and exosomes in metabolic diseases and inflammation. Cytokine Growth Factor Rev. 2020;51:27-39. doi:https://doi.org/10.1016/j.cytogfr.2019.12.008
7. Suades R, Greco MF, Padró T, Badimon L. Extracellular Vesicles as Drivers of Immunoinflammation in Atherothrombosis. Cells. 2022;11(11). doi:10.3390/cells11111845
8. Zhang M, Wang L, Chen Z. Research progress of extracellular vesicles in type 2 diabetes and its complications. Diabetic Medicine. 2022;39(9). doi:10.1111/dme.14865
9. Broide DH, Sriramarao P. Cellular Adhesion in Inflammation. Middleton's Allergy: Principles and Practice: Eighth Edition. 2014;1-2:83-97. doi:10.1016/B978-0-323-08593-9.00007-3
10. Takahashi Y, Watanabe R, Sato Y, et al. Novel phytopeptide osmotin mimics preventive effects of adiponectin on vascular inflammation and atherosclerosis. Metabolism. 2018;83:128-138. doi:10.1016/J.METABOL.2018.01.010
11. ADA. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. Published online 2020. doi:10.2337/dc20-S002
12. Bonora E, Targher G, Alberiche M, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: Studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. Published online 2000. doi:10.2337/diacare.23.1.57
13. Matthews DR, Hosker JR, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis Model Assessment: Insulin Resistance and Fl-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Vol 28.; 1985.
14. Luis Fernando LS, José Manuel GM, Juan Manuel MS, et al. Glycoxidated ferritin induces the release of microparticles positive for Toll-like receptors derived from peripheral blood CD14+ cells. Arch Biol Sci. 2017;69(3):383-390. doi:10.2298/ABS160614106L
15. Alfaro C, Teijeira A, O~ Nate C, et al. Biology of Human Tumors Tumor-Produced Interleukin-8 Attracts Human Myeloid-Derived Suppressor Cells and Elicits Extrusion of Neutrophil Extracellular Traps (NETs). Clin Cancer Res. 22(15). doi:10.1158/1078-0432.CCR-15-2463
16. Choi HM, Doss HM, Kim KS. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int J Mol Sci. 2020;21(4). doi:10.3390/IJMS21041219
17. Gariballa S, Alkaabi J, Yasin J, Al Essa A. Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC Endocr Disord. 2019;19(1):55. doi:10.1186/s12902-019-0386-z
18. Yamauchi T, Nio Y, Maki T, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332-339. doi:10.1038/nm1557
19. Sun X, He J, Mao C, et al. Negative regulation of adiponectin receptor 1 promoter by insulin via a repressive nuclear inhibitory protein element. FEBS Lett. 2008;582:3401-3407. doi:10.1016/j.febslet.2008.08.037
20. Blüher M, Bullen Jr. JW, Lee JH, et al. Circulating Adiponectin and Expression of Adiponectin Receptors in Human Skeletal Muscle: Associations with Metabolic Parameters and Insulin Resistance and Regulation by Physical Training. J Clin Endocrinol Metab. 2006;91(6):2310-2316. doi:10.1210/jc.2005-2556
21. Weigert J, Neumeier M, Wanninger J, et al. Reduced response to adiponectin and lower abundance of adiponectin receptor proteins in type 2 diabetic monocytes. FEBS Lett. 2008;582(12):1777-1782. doi:https://doi.org/10.1016/j.febslet.2008.04.031
22. Liang Y, Lehrich BM, Zheng S, Lu M. Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy. J Extracell Vesicles. 2021;10(7):e12090. doi:https://doi.org/10.1002/jev2.12090
23. Li P, Qin C. Elevated Circulating VE-Cadherin + CD144 + Endothelial Microparticles in Ischemic Cerebrovascular Disease. Thromb Res. 2015;135(2):375-381. doi:10.1016/J.THROMRES.2014.12.006
24. Toma L, Sanda GM, Deleanu M, Stancu CS, Anca •, Sima V. Glycated LDL increase VCAM-1 expression and secretion in endothelial cells and promote monocyte adhesion through mechanisms involving endoplasmic reticulum stress. doi:10.1007/s11010-016-2724-z
25. Kulkarni H, Mamtani M, Peralta J, et al. Soluble Forms of Intercellular and Vascular Cell Adhesion Molecules Independently Predict Progression to Type 2 Diabetes in Mexican American Families. PLoS One. 2016;11(3):e0151177-e0151177. doi:10.1371/journal.pone.0151177
26. Leinonen E, Hurt-Camejo E, Wiklund O, Hultén LM, Hiukka A, Taskinen MR. Insulin resistance and adiposity correlate with acute-phase reaction and soluble cell adhesion molecules in type 2 diabetes. Atherosclerosis. 2003;166(2):387-394. doi:https://doi.org/10.1016/S0021-9150(02)00371-4
27. Blüher M, Bullen Jr. JW, Lee JH, et al. Circulating Adiponectin and Expression of Adiponectin Receptors in Human Skeletal Muscle: Associations with Metabolic Parameters and Insulin Resistance and Regulation by Physical Training. J Clin Endocrinol Metab. 2006;91(6):2310-2316. doi:10.1210/jc.2005-2556
28. Al-Hamodi Z, Al-Habori M, Al-Meeri A, Saif-Ali R. Association of adipokines, leptin/adiponectin ratio and C-reactive protein with obesity and type 2 diabetes mellitus. Diabetol Metab Syndr. 2014;6(1):99. doi:10.1186/1758-5996-6-99
29. Ouchi N, Kihara S, Arita Y, et al. Novel Modulator for Endothelial Adhesion Molecules Adipocyte-Derived Plasma Protein Adiponectin.; 1999. http://www.circulationaha.org
30. Jager A, Van Hinsbergh VWM, Kostense PJ, et al. Increased levels of soluble vascular cell adhesion molecule 1 are associated with risk of cardiovascular mortality in type 2 diabetes: the Hoorn Study. Diabetes. 2000;49(3):485-491. doi:10.2337/DIABETES.49.3.485
31. Tramontano AF, Lyubarova R, Tsiakos J, Palaia T, Deleon JR, Ragolia L. Clinical Study Circulating Endothelial Microparticles in Diabetes Mellitus. Mediators Inflamm. 2010;2010. doi:10.1155/2010/250476
32. Jimenez JJ, Jy W, Mauro LM, Horstman LL, Soderland C, Ahn YS. Endothelial microparticles released in thrombotic thrombocytopenic purpura express von Willebrand factor and markers of endothelial activation. Br J Haematol. 2003;123(5):896-902. doi:10.1046/J.1365-2141.2003.04716.X
33. Seow KM, Juan CC, Wang PH, Ho LT, Hwang JL. Expression Levels of Vascular Cell Adhesion Molecule-1 in Young and Nonobese Women with Polycystic Ovary Syndrome. Gynecol Obstet Invest. 2012;73(3):236-241. doi:10.1159/000334175
34. Kwaifa IK, Bahari H, Yong YK, Md Noor S. Endothelial Dysfunction in Obesity-Induced Inflammation: Molecular Mechanisms and Clinical Implications. Biomolecules 2020, Vol 10, Page 291. 2020;10(2):291. doi:10.3390/BIOM10020291