Influence of Methodological Variables on Fracture Strength Test Results of Intact Premolars: an ex-vivo study

Main Article Content

Carlo Gaeta Giulia Malvicini Emanuele Mignosa Gianmarco Cecot Simone Grandini Crystal Marruganti

Abstract

The present ex vivo study evaluated the influence of periodontal ligament simulation, load inclination, and tip morphology on fracture strength test results on intact premolars. Forty maxillary premolars were divided into four groups, Group 1, with a 90° load inclination, spherical tip with a diameter of 3mm and periodontal ligament simulation (PDL+); Group 2, with a 90° load inclination, flat tip with a diameter of 2mm, PDL+; Group 3, with a 45° load inclination, flat tip with 2mm of diameter, PDL+; Group 4, 90° load inclination, spherical tip with 3mm diameter, without periodontal ligament reproduction. Interactions among variables and intergroup significance were tested with Wilcoxon rank-sum and Kruskal Wallis’s tests (p≤0.05). Statistically significant differences were found between groups B and C, but they were not found for the others. A 90° load inclination significantly increases fracture strength, while periodontal ligament simulation and tip morphology did not significantly influence the results.

Keywords: fracture strength, periodontal ligament, premolar, tooth fractures

Article Details

How to Cite
GAETA, Carlo et al. Influence of Methodological Variables on Fracture Strength Test Results of Intact Premolars: an ex-vivo study. Medical Research Archives, [S.l.], v. 11, n. 9, sep. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4217>. Date accessed: 02 jan. 2025. doi: https://doi.org/10.18103/mra.v11i9.4217.
Section
Research Articles

References

1. Torabzadeh H, Ghasemi A, Dabestani A, Razmavar S. Fracture Resistance of Teeth Restored with Direct and Indirect Composite Restorations. J Dent (Tehran). 2013;10(5):417. Accessed April 14, 2023. /pmc/articles/PMC4025423/

2. Tamse A, Zilburg I, Halpern J. Vertical root fractures in adjacent maxillary premolars: An endodontic-prosthetic perplexity. Int Endod J. 1998;31(2):127-132. doi:10.1046/J.1365-2591.1998.00129.X

3. Mergulhão VA, De Mendonça LS, De Albuquerque MS, Braz R. Fracture Resistance of Endodontically Treated Maxillary Premolars Restored With Different Methods. Oper Dent. 2019;44(1):E1-E11. doi:10.2341/17-262-L

4. Abe Y, Nogami K, Mizumachi W, Tsuka H, Hiasa K. Occlusal-supporting ability of individual maxillary and mandibular teeth. J Oral Rehabil. 2012; 39(12):923-930. doi:10.1111/JOOR.12008

5. de Araújo TM, Caldas LD. Tooth extractions in Orthodontics: first or second premolars? Dental Press J Orthod. 2019;24(3):88. doi:10. 1590/2177-6709.24.3.088-098.BBO

6. Xu H, Ye N, Lin F, Heo YC, Fok ASL. A new method to test the fracture strength of endodontically-treated root dentin. Dental Materials. 2021;37(5):796-804. doi:10.1016/J. DENTAL.2021.02.001

7. Uzunoglu-Özyürek E, Küçükkaya Eren S, Eraslan O, Belli S. Critical evaluation of fracture strength testing for endodontically treated teeth: a finite element analysis study. Restor Dent Endod. 2019;44(2). doi:10.5395/RDE. 2019.44.E15

8. Gaeta C, Marruganti C, Mignosa E, Franciosi G, Ferrari E, Grandini S. Influence of z Tests Results of Premolars with Different Number of Residual Walls. A Systematic Review with Meta-Analysis. Dent J (Basel). 2021;9(12). doi:10.3390/DJ9120146

9. Rees JS. An investigation into the importance of the periodontal ligament and alveolar bone as supporting structures in finite element studies. J Oral Rehabil. 2001; 28(5): 425-432. doi:10.1046/J.1365-2842.2001.00686.X

10. Aydin B, Pamir T, Baltaci A, Orman MN, Turk T. Effect of storage solutions on microhardness of crown enamel and dentin. Eur J Dent. 2015; 9(2):262-266. doi:10.4103/1305-7456.156848

11. Soares CJ, Pizi ECG, Fonseca RB, Martins LRM. Influence of root embedment material and periodontal ligament simulation on fracture resistance tests. Braz Oral Res. 2005; 19(1):11-16. doi: 10.1590/S1806-83242005000100003

12. Salis SG, Hood JAA, Kirk EEJ, Stokes ANS. Impact-fracture energy of human premolar teeth. J Prosthet Dent. 1987; 58(1):43-48. doi: 10.1016/S0022-3913(87)80140-3

13. Taha NA, Palamara JE, Messer HH. Fracture strength and fracture patterns of root filled teeth restored with direct resin restorations. J Dent. 2011; 39(8):527-535. doi:10.1016 /J.JDENT.2011.05.003

14. Dall Agnol RJC, Ghiggi PC, Paranhos MPG, Borges GA, Burnett Júnior LH, Spohr AM. Influence of resin cements on cuspal deflection and fracture load of endodontically-treated teeth restored with composite inlays. Acta Odontol Scand. 2013;71(3-4):664-670. doi:10.3109/00016357.2012.715187

15. Jantarat J, Palamara JEA, Messer HH. An investigation of cuspal deformation and delayed recovery after occlusal loading. J Dent. 2001; 29(5):363-370. doi:10.1016/S0300-5712(01)00018-5

16. Marchionatti AME, Wandscher VF, Broch J, et al. Influence of periodontal ligament simulation on bond strength and fracture resistance of roots restored with fiber posts. Journal of Applied Oral Science. 2014; 22(5):450. doi:10.1590/1678-775720140067

17. F I, P O, K B. Intermittent loading of teeth restored using prefabricated carbon fiber posts. Int J Prosthodont. 1996;9(2):131-136. Accessed April 17, 2023. https://pubmed.ncbi.nlm.nih.gov/8639235/

18. Yang HS, Lang LA, Molina A, Felton DA. The effects of dowel design and load direction on dowel-and-core restorations. J Prosthet Dent. 2001; 85(6):558-567. doi:10.1067/MPR.2001.115504