Abfraction lesion in central incisor tooth: displacement and stress evaluation by laser speckle and finite element analysis

Main Article Content

Isis Andrea Venturini Pola Poiate, Professor Mikiya Muramatsu, Professor Matsuyoshi Mori, Professor Tomie Toyota Campos, Professor Kiyofumi Matsuda Marcio André Prieto Aparicio Lopez, Student Edgard Poiate Jr

Abstract

The aim of this study was to evaluate the displacement and stress distribution in the cervical region of a mandibular central incisor tooth (MCIT) within wedge-shaped lesion simulating abfraction lesion by means of Laser Speckle (LS) and 3D Finite Element Analysis (FEA) and then compared. One experimental setup was assembled with a MCIT attached in resin and submitted to the LS. An increasing static load from 12.1 to 42.1N was applied in incisal buccal slope at 15º in relation to the tooth's long axis. A 3D numerical model with linear tetrahedral elements and homogeneous, linear and isotropic behavior was built with the same boundary conditions of the experimental setup. The LS present higher displacement in the wedge-shaped lesion than the FEA, but both had an excellent agreement in the displacement direction. The LS show a nonlinear behavior from 32.1N. The FEA has presented higher tensile stresses at the root dentin. In the FEA cementoenamel junction area, tensile stress isn't exceeding the enamel's tensile strength, under simulated conditions. It was concluded that LS is a faster tool and acceptable when studying the quantitative displacement of the biomechanical behavior in MCIT, and FEA is appropriate for the quantitative stress analysis, and both bring important results of the stress and displacement that are fundamental in planning preventive and restorative approach in non-carious cervical lesions.

Keywords: speckle, displacement, finite elements, stress, abfraction, tooth

Article Details

How to Cite
POIATE, Isis Andrea Venturini Pola et al. Abfraction lesion in central incisor tooth: displacement and stress evaluation by laser speckle and finite element analysis. Medical Research Archives, [S.l.], v. 11, n. 8, aug. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4220>. Date accessed: 06 jan. 2025. doi: https://doi.org/10.18103/mra.v11i8.4220.
Section
Research Articles

References

1. Pereira AFV, Poiate IAVP, Poiate Jr E, Miranda Jr WR. Abfraction lesions revisited: Contemporary Concepts and Therapeutic Measures. Rev. Gaúcha Odont. 2008;36:321-326.

2. Barttlet DW, Shah P. A critical review of non-carious cervical (wear) lesions and the role of abfraction, erosion, and abrasion. J. Dent. Res. 2006;85:306-312.

3. Poiate IAVP, Vasconcellos AB, Poiate Jr E, Dias KRHC. Stress distribution in the cervical region of on upper central incisor in a 3D finite element model. Braz. Oral. Res. 2009;23:161-168.

4. Lee WC, Eakle WS. Possible role of tensile stress in the etiology of cervical erosive lesions of teeth. J. Prosth. Dent. 1984;52:374–380.

5. Grippo JO. Abfractions: a new classification of hard tissue lesions of teeth. J. Esthet. Dent. 1991;3:14-19.

6. Kuroe T, Itoh H, Caputo AA, Konuma M. Biomechanics of cervical tooth structure lesions and their restoration. Quint. Int. 2000;31:267-274.

7. Kuroe T, Itoh H, Caputo AA, Nakahara H. Potential for load-induced cervical stress concentration as a function of periodontal support. J. Prosth. Dent. 1999;11:215–222.

8. Lee WC, Eakle WS. Stress-induced cervical lesions: review of advances in the past ten years. J. Prosth. Dent. 1996;75:487-494.

9. Rees JS. The role of cuspal flexure in the development of abfraction lesions: a finite element study. Eur. J. Oral Sci. 1998;106:1028-1032.

10. McCoy G. The etiology of gingival erosion. J. Oral Implantol. 1982;10:361-366.

11. Peaumans M, De Munck J, Landuyt V, Kanumilli P, Yoshida Y, Inoue S, et al. Restoring cervical lesions with flexible composites. Dent. Mater.2007;23:749-754.

12. Burke FJT, Whitehead SA, McCauguey AD. Contemporary concepts in the pathogenesis of the Class V non-carious lesion. Dent. Update. 1995;22:28-32.

13. Heymann HO, Sturdevant JR, Bayne SC, Wilder AD, Sluder TB, Brunson WD. Examining tooth flexural effects on cervical restorations: a two-year clinical study. J. Am. Dent. Assoc. 1991;122:41–47.

14. Goel VK, Khera SC, Singh K. Clinical implications of the response of enamel and dentin to masticatory loads. J. Prosthet. Dent. 1990;64:446-454.

15. Leinfelder KF. Restoration of abfracted lesions. Compendium. 1994;15:1396-1400.

16. Alani AH, Toh CG. Detection of microleakage around dental restorations: a review. Oper. Dent. 1997:22:173-185.

17. Braem M, Lambretchs P, Vanherle G. Stress-induced cervical lesions. J. Prosthet. Dent. 1992;67:718-722.

18. Lambrechts P, Braem M, Vanherle G. Evaluation of clinical performance for posterior composite resin adhesives. Oper. Dent. 1987;12:53-78.

19. Manhart J, Chen HY, Mehl A, Weber K, Hickel R. Marginal quality and microleakage of adhesives class V restorations. J. Dent. 2001;29:123-130.

20. Grippo JO. Noncarious cervical lesions: the decision to ignore or restore. J. Esthet. Dent. 1992;4:55-64.

21. Kirveskari P, Jämsä T, Alanen P. Occlusal adjustment and the incidence of demand for temporomandibular disorder treatment. J. Prosthet. Dent. 1998;79(4):433-438.

22. Baratieri LN, Canabarro S, Lopes GC, Ritter AV. Effect of resin viscosity and enamel beveling on the clinical performance of class V composite restorations: three-years results. Oper. Dent. 2003;28:482-487.

23. Browning WD, Brackett WW, Gilpatrick RO. Two-year clinical comparison of a microfilled and a hybrid resin-based composite in non-carious class V lesions. Oper. Dent. 2000;25:46-50.

24. Van Meerbeek BV, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, et al. Adhesion to enamel and dentin: current status and future challenges. Oper. Dent. 2003;28:215-235.

25. Gladys S, Van Meerbeek BV, Lambrechts P, Vanherle G. Marginal adaptation and retention of a glass-ionomer, resin-modified glass-ionomers and a polyacid-modified resin composite in cervical class-V lesions. Dent. Mater.1998;14:294-306.

26. Gladys S, Van Meerbeek B, Lambrechts P, Vanherle G. Evaluation of esthetic parameters of resin-modified glass-ionomer materials and a polyacid-modified resin composite in class V cervical lesions. Quint. Int. 1999;30:607-614.

27. Fruits TJ, VanBrunt CL, Khajotia SS, Duncanson Jr MG. Effect of cycling lateral forces on microleakage in cervical resin composite restorations. Quint. Int. 2002;33:205-212.

28. Schneider LFJ, Tango RN, Milan FM, Mundstock GV, Consani S, Sinhoreti MAC. Microleakage evaluation of composite restorations submitted to load cycling. Cienc. Odontol. Bras. 2004;7:27-33.

29. Muramatsu M, Lunazzi JL. Advantages of a derivative technique in performing speckle correlations. Appl. Opt. 1984;23(18):3038-3039.

30. Rebollo MA, Landau MR, Hogert EN, Gaggioli NG, Muramatsu M. Roughness determination by direct visual observation of the speckle pattern. Opt. Laser Tech. 1995;27(6):355-356.

31. Silva Jr E, Silva ERT, Muramatsu M, Lannes SCS. Transient process in ice creams evaluated by laser speckles. Food Res. Int. 2010;43:1470-1475.

32. Nieri TM, Peres MAO, Silva ER, Fabbro IMD, Muramatsu M, Andreollo NA. The optical analysis of the abdominal wall using the biospeckle after implants of polypropylene mesh in rats. Acta Cir. Bras. 2009;24(6):442-448.

33. Muramatsu M, Guedes GH, Gaggioli NG. Speckle correlation used to study the oxidation process in real time. Opt. Laser Tech. 1994;26(3):167-168.

34. ERF R (ed.). Speckle Metrology. Academic Press;1978.

35. Ruiz PD, Kaufmann GH, MoK O, Galizzi GE. Evaluation of impact-induced transient deformations using double-pulsed electronic speckle pattern interferometry and finite elements. Opt. Lasers Eng. 2000;32:473-484.

36. Nicoletto G, Anzelotti G, Riva E. Mesoscopic strain fields in woven composites: Experiments vs. finite element modeling. Opt. Lasers Eng. 2009;47:352-359.

37. Tyrer JR, Petzing JN. In-plane Electronic Speckle Pattern Shearing Interferometry. Opt. Lasers Eng. 1997;26:395-406.

38. Ruiz PD, Kaufmann GH, Möller O, Galizzi GE. Evaluation of impact-induced transient deformations using double-pulsed electronic speckle pattern interferometry and finite elements. Opt. Lasers Eng. 2000;32:473-484.

39. Aebischer HA, Waldner S. Strain distributions made visible with image-shearing speckle pattern interferometry. Opt. Lasers Eng. 1997:26:407-420.

40. Chen DJ, Chiang FP. Computer-aided speckle interferometry using spectral amplitude fringes. Appl. Opt. 1993;32(2):225-236.

41. Huntley JM. Fast transforms for speckle photography fringe analysis. Opt. Lasers Eng. 1986;7(3):149-161.

42. L. B. Meng, G. C. Jin, X. F. Yao, Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation. Opt. Lasers Eng. 45, 57-63 (2007).

43. J. W. Tong & Y. Na, A Study of Stress Propagation Under Impact Loading Using Double Exposure Speckle Photography and Finite Element Analysis. Opt. Lasers Eng. 12 35-42 (1990).

44. R. González-Peña, R.M.C.O Anda, A. J. Pino-Velázquez, Y. González-Jorge, R. Salvador-Palmer, Determination of strain and stress distribution on shearwalls by using the speckle photography technique. Opt. Lasers Eng. 39, 609-618 (2003).

45. J.C. Dainty (ed.): Laser Speckle and Related Phenomena (Springer-Verlag 1975).

46. K.J. Bathe: An introduction to the use of the finite element procedures in Finite Element Procedures, 3th ed. (Prentice-Hall, Englewood Cliffs, New Jersey 1996).

47. D. Green, N.Y. Brooklyn, Stereomicroscopic study of 700 root apices of maxillary and mandibular posterior teeth. Oral. Surg. Oral Med. Oral Pathol. 13, 728-33 (1960).

48. H.T. Shillingburg, C.S. Grace, Thickness of enamel and dentin. J. South Calif. Dent. Assoc. 41, 33-52 (1973).

49. I.A.V.P. Poiate, A.B. Vasconcellos, A. Andueza, I.R.V. Pola, E. J. Poiate, Three dimensional finite element analyses of oral structures by computerized tomograghy. J. Biosc. Bioeng. 106, 906-909 (2008).

50. I.A.V.P. Poiate, A.B. Vasconcellos, R.B. Santana, E. Poiate Jr, Three-dimensional stress distribution in the human periodontal ligament in masticatory, parafunctional, and trauma loads: finite element analysis. J. Periodont. 80, 1859-1867 (2009).

51. I.A.V.P. Poiate, A.B. Vasconcellos, E. Poiate Jr, K.R.C Dias, Stress distribution in the cervical region in a 3D FE. Braz. Oral Res. 23, 161-168 (2009).

52. I.A.V.P. Poiate, A.B. Vasconcellos, M. Mori, E. Poiate Jr, 2D and 3D finite element analysis of central incisor generated by computerized tomography. Comput. Meth. Prog. Biomed. 104(2), 292-9 (2011).

53. J.W. Farah, R.G. Craig, Reflection of photoelastic stress analysis of a dental bridge. J. Dent. Res. 53, 859-866 (1974).

54. C.C. Ko, C.S. Chu, K.H. Chung, M.C. Lee, Effects of post on dentin stress distribution in pulpless teeth. J. Prosthet. Dent. 68 421-427, (1992).

55. Y. Çiftçi, S. Canay, The effect of veneering materials on stress distribution in implant-supported fixed prosthetic restorations. Int. J. Oral Maxillofac. Implants 15, 571-582 (2000).

56. W.J. O’Brien, University of Michigan. NIDR Materials Science Research Center at the University of Michigan School of Dentistry. Biomaterials Properties Database [homepage on the Internet] [accessed 2015 Jan 1; Revised April, 1997]. Available from: http://www.zubnistranky.cz/intro.html.

57. E. Archbold & A.E. Ennos, Displacement measurement from double-exposure laser photographs. Optica Acta 19, 253-271 (1972).

58. V.F. Ferrario, C. Sforza, G. Serrao, C. Dellavia, G.M. Tartaglia, Single tooth bite forces in healthy young adults. J. Oral Rehabil. 31 18–22, (2004).

59. O. Bernhardt, D. Gesch, C. Schwahn, F. Mack, G. Meyer, U. John, et al, Epidemiological evaluation of the multifactorial aetiology of abfractions. J. Oral Rehabil. 33 17- 25, (2006).

60. H.A. Lyttle, N. Sidhu, B. Smyth, A study of the classification and treatment of noncarious cervical lesions by general practioners. J. Prosthet. Dent. 79, 342-6 (1998).

61. J.S. Rees, M. Hammadeh, D.C. Jagger, Abfraction lesion formation in maxillary incisors, canines and premolars: a finite element study. Eur. J. Oral Sci. 111, 149–154 (2003).

62. E.B. Las Casas, T.P. Cornacchia, P.H. Gouvêa, C.A. Cimini, Abfraction and anisotropy – effects of prisms orientation on stress distribution. Comput. Methods Biomech. Biomed. Engin. 6, 65-73 (2003).

63. J.S. Rees, M. Hammadeh, Undermining of enamel as a mechanism of abfraction lesion formation: a finite element study. Eur. J. Oral Sci. 112, 347-352 (2004).

64. St˘anu¸s A et al. Morphological and Optical Coherence Tomography Aspects of Non-Carious Cervical Lesions. J. Pers. Med. 2023, 13, 772.

65. Nascimento MN et al. Abfraction lesions: etiology, diagnosis, and treatment options. Clinical. Cosmetic and Investigational Dentistry. 2016;8:79-87.

66. El-Marakby et al. Noncarious Cervical Lesions as Abfraction: Etiology, Diagnosis, and Treatment Modalities of Lesions: A Review Article. Dentistry 2017, 7:438.

67. Mathias C et al. Treatment of non-carious lesions: Diagnosis, restorative materials and techniques. Braz Jour Oral Sc. 2018;17: e18336.

68. Roberts WE, Mangum JE, Schneider, PM. Pathophysiology of Demineralization, Part I: Attrition, Erosion, Abfraction, and Noncarious Cervical Lesions. Curr Osteoporos Rep. 2022;20:90–105.

69. Goodacre CJ, Eugene Roberts W, Munoz CA. Noncarious cervical lesions: Morphology and progression, prevalence, etiology, pathophysiology, and clinical guidelines for restoration. J Prosthodont. 2023;32:e1–e18.