Evaluation of antimicrobial and Matrix metalloproteinase inhibitory properties of onion peel extracts - An in vitro study

Main Article Content

Anand V Susila, M.D.S, PhD Aruna Kumari Veronica, M.D.S, Professor K. Surya, B.D.S, Post Graduate student Shamini Sai, M.D.S, Professor

Abstract

Matrix metalloproteinase inhibition and antimicrobial properties are important in many applications in the field of Conservative Dentistry and Endodontics to preserve the quality of dentin in a bond or to prevent reinfection and failure in root canal treated teeth. Many natural products are being explored for the above properties as they are safer compared to synthetic ones.


Aim: Present study aims to check for the antibacterial action of small onion and large onion peel extracts against Enterococcus faecalis (E. faecalis), Streptococcus mutans (S. mutans), and their Matrix metalloproteinase inhibitory action.


Materials and methods: Ethanolic extracts of small onion and large onion peels were prepared and their Minimum inhibitory concentration, Minimum bactericidal concentration, and zone of inhibition determined. Computational Drug Designing and Characterization of Phytocompounds present in the extract was done by Gas Chromatography-Mass Spectrometry Profiling. Ultraviolet-visible spectrophotometric analysis and Fourier transform infrared spectroscopy were performed for the characterization. Molecular docking (in-silico) was performed using AutoDock open source free software by using editing options and other default parameters for enzymatic interactions and affinities.


Results: Both onion peel extracts had good antibacterial properties against both S mutans and  E faecalis as determined by their Minimum inhibitory concentration, Minimum bactericidal concentration, and zone of inhibition. They were found to have many phytochemicals notably, β-sitosterol and quercetin. Small onion peel extract had greater quantities of β-sitosterol and quercetin than large onion peel extract in Gas Chromatography-Mass Spectrometric analysis. Ultraviolet-visible spectrophotometry revealed that the extracts were transparent in the wavelength range studied and had the characteristic peaks. Fourier transform infrared Spectroscopy  confirmed the presence of benzene derivative and anhydride. Molecular docking for enzymatic inhibition using in-silico docking study found that both the extracts have Matrix metalloproteinase 2 & 9 inhibition equivalent to control Galardin.

Keywords: Antibacterial property, Onion peel extracts, MMP inhibition, Quercetin

Article Details

How to Cite
SUSILA, Anand V et al. Evaluation of antimicrobial and Matrix metalloproteinase inhibitory properties of onion peel extracts - An in vitro study. Medical Research Archives, [S.l.], v. 11, n. 9, sep. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4225>. Date accessed: 20 jan. 2025. doi: https://doi.org/10.18103/mra.v11i9.4225.
Section
Research Articles

References

1. Nakata K, Yamasaki M, Iwata T, Suzuki K, Nakane A, Nakamura H. Anaerobic Bacterial Extracts Influence Production of Matrix Metalloproteinases and Their Inhibitors by Human Dental Pulp Cells. J Endod. 2000; 26 (7):410-413. doi: 10.1097/00004770-200007000-00008

2. Shin S, Lee J, Baek S, Lim S. Tissue Levels of Matrix Metalloproteinases in Pulps and Periapical Lesions. J Endod. 2002;28 (4):313-315. doi:10.1097/00004770-200204000-00013

3. Chang Y, Yang S, Hsieh Y. Regulation of Matrix Metalloproteinase-2 Production by Cytokines and Pharmacological Agents in Human Pulp Cell Cultures. J Endod. 2001; 27(11):679-682. doi:10.1097/00004770-200111000-00007

4. Lin S, Wang C, Huang S, et al. Induction of Dental Pulp Fibroblast Matrix Metalloproteinase–1 and Tissue Inhibitor of Metalloproteinase–1 Gene Expression by Interleukin–1α and Tumor Necrosis Factor–α Through a Prostaglandin–Dependent Pathway. J Endod. 2001; 27 (3):185-189. doi:10.1097/00004770-200103000-00012

5. Wahlgren J, Salo T, Teronen O, Luoto H, Sorsa T, Tjaderhane L. Matrix metalloproteinase-8 (MMP-8) in pulpal and periapical inflammation and periapical root-canal exudates. Int Endod J. 2002; 35(11):897-904. doi:10.1046/j.1365-2591.2002.00587.x

6. Leonardi R, Caltabiano R, Loreto C. Collagenase-3 (MMP-13) is expressed in periapical lesions: an immunohistochemical study. Int Endod J. 2005; 38 (5):297-301. doi:10.1111/j.1365-2591.2005.00943.x

7. Nakabayashi N, Nakamura M, Yasuda N. Hybrid Layer as a Dentin-Bonding Mechanism. J Esthet Restor Dent. 1991; 3 (4):133-138. doi:10.1111/j.1708-8240.1991.tb00985.x

8. Hashimoto M, Nagano F, Endo K, Ohno H. A review: Biodegradation of resin–dentin bonds. Jpn Dent Sci Rev. 2011; 47(1):5-12. doi:10.1016/j.jdsr.2010.02.001

9. Chaussain C, Boukpessi T, Khaddam M, Tjaderhane L, George A, Menashi S. Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration. Front Physiol. 2013; 4. doi:10.3389/fphys.2013.00308

10. Liu Y, Tjäderhane L, Breschi L, et al. Limitations in Bonding to Dentin and Experimental Strategies to Prevent Bond Degradation. J Dent Res. 2011; 90 (8):953-968. doi: 10.1177/0022034510391799

11. Carvalho C, Fernandes FP, Freitas VDP, et al. Effect of green tea extract on bonding durability of an etch-and-rinse adhesive system to caries-affected dentin. J Appl Oral Sci. 2016; 24 (3):211-217. doi: 10.1590/1678-775720150518

12. Paschoini VL, Ziotti IR, Neri CR, Corona SAM, Souza-Gabriel AE. Chitosan improves the durability of resin-dentin interface with etch-and-rinse or self-etch adhesive systems. J Appl Oral Sci. 2021; 29:e20210356. doi: 10.1590/1678-7757-2021-0356

13. Bhandari S, Kondody R, Nair A, Mathew R, Divakar K, Nambiar M. Evaluation of Aloe vera as matrix metalloproteinase inhibitor in human dentin with and without dentin-bonding agent: An in vitro study. J Conserv Dent. 2021; 24 (5):491. doi:10.4103/jcd.jcd_474_21

14. Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. 2016; 2 1(7):901. doi:10.3390/molecules21070901

15. Şakul AA, Okur ME. BETA-SITOSTEROL AND ITS ANTINOCICEPTIVE MECHANISM ACTION. Ank Univ Eczacilik Fak Derg. Published online May 15, 2021:7-7. doi:10.33483/jfpau.882831

16. Saeidnia S. The Story of Beta-sitosterol- A Review. Eur J Med Plants. 2014; 4 (5):590-609. doi:10.9734/EJMP/2014/7764

17. Santas J, Almajano MP, Carbó R. Antimicrobial and antioxidant activity of crude onion (Allium cepa , L.) extracts. Int J Food Sci Technol. 2010; 45 (2):403-409. doi:10.1111/j.1365-2621.2009.02169.x

18. Duan Y, Jin DH, Kim HS, et al. Analysis of Total Phenol, Flavonoid content and Antioxidant Activity of Various Extraction Solvents Extracts from Onion (Allium cepa L.) Peels. J Oil Appl Sci. 2015; 32 (3):418-426. doi:10.12925/JKOCS.2015.32.3.418

19. Osonga FJ, Akgul A, Miller RM, et al. Antimicrobial Activity of a New Class of Phosphorylated and Modified Flavonoids. ACS Omega. 2019; 4 (7):12865-12871. doi:10.1021/acsomega.9b00077

20. Li K, Yang H, Yan H, et al. Quercetin as a simple but versatile primer in dentin bonding. RSC Adv. 2017; 7 (58):36392-36402. doi: 10.1039/C7RA07467K

21. Kwak JH, Seo JM, Kim NH, et al. Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties. Saudi J Biol Sci. 2017; 24(6):1387-1391. doi:10.1016/j.sjbs.2016.05.014

22. Yi Shu. Antibacterial activity of quercetin on oral infectious pathogens. Afr J Microbiol Res. 2011; 5 (30). doi:10.5897/AJMR11.849

23. Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46 (W1):W296-W303. doi:10.1093/nar/gky427

24. Studer G, Tauriello G, Bienert S, Biasini M, Johner N, Schwede T. ProMod3—A versatile homology modelling toolbox. Schneidman-Duhovny D, ed. PLOS Comput Biol. 2021; 17 (1):e1008667. doi:10.1371/journal.pcbi.1008667

25. Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo—distance constraints applied on model quality estimation. Elofsson A, ed. Bioinformatics. 2020; 36 (6):1765-1771. doi:10.1093/bioinformatics/btz828

26. Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep. 2017;7 (1):10480. doi: 10.1038/s41598-017-09654-8

27. Pražnikar J, Tomić M, Turk D. Validation and quality assessment of macromolecular structures using complex network analysis. Sci Rep. 2019;9 (1):1678. doi: 10.1038/s41598-019-38658-9

28. Bienert S, Waterhouse A, de Beer TAP, et al. The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res. 2017; 45 (D1):D313-D319. doi:10.1093/nar/gkw1132

29. Tjäderhane L, Carrilho MR, Breschi L, Tay FR, Pashley DH. Dentin basic structure and composition-an overview: Overview of dentin structure. Endod Top. 2009; 20 (1):3-29. doi:10.1111/j.1601-1546.2012.00269.x

30. Palosaari H, Pennington CJ, Larmas M, Edwards DR, Tjäderhane L, Salo T. Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue: MMPs and TIMPs in mature human teeth. Eur J Oral Sci. 2003; 111 (2):117-127. doi:10.1034/j.1600-0722.2003.00026.x

31. Cilli R, Prakki A, De Araújo PA, Pereira JC. Influence of glutaraldehyde priming on bond strength of an experimental adhesive system applied to wet and dry dentine. J Dent. 2009; 37 (3):212-218. doi:10.1016/j.jdent.2008.11.017

32. Breschi L, Mazzoni A, Nato F, et al. Chlorhexidine stabilizes the adhesive interface: A 2-year in vitro study. Dent Mater. 2010; 26 (4):320-325. doi:10.1016/j.dental.2009.11.153

33. Tallant C, Marrero A, Gomis-Rüth FX. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim Biophys Acta BBA - Mol Cell Res. 2010; 1803 (1):20-28. doi:10.1016/j.bbamcr.2009.04.003

34. Mahalaxmi S, Madhubala M, Jayaraman M, Sathyakumar S. Evaluation of matrix metalloproteinase and cysteine cathepsin activity in dentin hybrid layer by gelatin zymography. Indian J Dent Res. 2016; 27 (6):652. doi:10.4103/0970-9290.199585

35. Tay CX, Quah SY, Lui JN, Yu VSH, Tan KS. Matrix Metalloproteinase Inhibitor as an Antimicrobial Agent to Eradicate Enterococcus faecalis Biofilm. J Endod. 2015; 41 (6):858-863. doi:10.1016/j.joen.2015.01.032

36. Thompson JM, Agee K, Sidow SJ, et al. Inhibition of Endogenous Dentin Matrix Metalloproteinases by Ethylenediaminetetraacetic Acid. J Endod. 2012; 38 (1):62-65. doi:10.1016/j.joen.2011.09.005

37. Demeule M, Brossard M, Pagé M, Gingras D, Béliveau R. Matrix metalloproteinase inhibition by green tea catechins. Biochim Biophys Acta BBA - Protein Struct Mol Enzymol. 2000; 1478 (1):51-60. doi: 10.1016/S0167-4838(00)00009-1

38. Liu Z, Feng X, Wang X, Yang S, Mao J, Gong S. Quercetin as an Auxiliary Endodontic Irrigant for Root Canal Treatment: Anti-Biofilm and Dentin Collagen-Stabilizing Effects In vitro. Materials. 2021; 14(5):1178. doi: 10.3390/ma14051178

39. Mooney EC, Holden SE, Xia XJ, et al. Quercetin Preserves Oral Cavity Health by Mitigating Inflammation and Microbial Dysbiosis. Front Immunol. 2021; 12:774273. doi:10.3389/fimmu.2021.774273

40. Sidhu JS, Ali M, Al-Rashdan A, Ahmed N. Onion (Allium cepa L.) is potentially a good source of important antioxidants. J Food Sci Technol. 2019; 56 (4):1811-1819. doi: 10.1007/s13197-019-03625-9

41. Kim SW, Ko MJ, Chung MS. Extraction of the flavonol quercetin from onion waste by combined treatment with intense pulsed light and subcritical water extraction. J Clean Prod. 2019; 231:1192-1199. doi:10.1016/j.jclepro.2019.05.280

42. Lazzarotto-Figueiró J, Capelezzo AP, Schindler MSZ, et al. Antioxidant activity, antibacterial and inhibitory effect of intestinal disaccharidases of extracts obtained from Eugenia uniflora L. Seeds. Braz J Biol. 2021;81 (2):291-300. doi:10.1590/1519-6984.224852

43. Fredotović Ž, Puizina J, Nazlić M, et al. Phytochemical Characterization and Screening of Antioxidant, Antimicrobial and Antiproliferative Properties of Allium × cornutum Clementi and Two Varieties of Allium cepa L. Peel Extracts. Plants. 2021; 10 (5):832. doi: 10.3390/plants10050832

44. Osman M. Potentiality of Roselle and Onion (Allium cepa) peel as Raw Materials for Producing Protocatechuic Acid in Tropical Malaysia: A Comparative Study. Indian J Sci Technol. 2014; 7(11):1847-1851. doi:10.17485/ijst/2014/v7i11.6

45. Cecchi L, Ieri F, Vignolini P, Mulinacci N, Romani A. Characterization of Volatile and Flavonoid Composition of Different Cuts of Dried Onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD. Molecules. 2020; 25 (2):408. doi: 10.3390/molecules25020408

46. Lanzotti V. The analysis of onion and garlic. J Chromatogr A. 2006; 1112 (1-2):3-22. doi:10.1016/j.chroma.2005.12.016

47. Krishnasamy Sekar R, Sridhar A, Perumalsamy B, Manikandan DB, Ramasamy T. In vitro Antioxidant, Antipathogenicity and Cytotoxicity Effect of Silver Nanoparticles Fabricated by Onion (Allium cepa L.) Peel Extract. BioNanoScience. 2020; 10 (1):235-248. doi: 10.1007/s12668-019-00691-3

48. Boreak N, Bhandi S. In-Silico modulation of Interleukin-8 (IL8) for the therapeutic management of endodontic pulpitis. Saudi J Biol Sci. 2022; 29 (2):905-910. doi:10.1016/j.sjbs.2021.10.015

49. Sharma D, Rani R, Chaturvedi M, Rohilla P, Yadav JP. In silico and in vitro approach of Allium cepa and isolated quercetin against MDR bacterial strains and Mycobacterium smegmatis. South Afr J Bot. 2019; 124:29-35. doi:10.1016/j.sajb.2019.04.019

50. Adegbola PI, Semire B, Fadahunsi OS, Adegoke AE. Molecular docking and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates as potential anti-viral drugs for Covid-19. VirusDisease. 2021; 32 (1):85-97. doi: 10.1007/s13337-021-00682-7